Back to Search Start Over

Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12

Authors :
Massimiliano Cardinale
Gabriele Berg
Alexander Steinbüchel
Nicole Lindenkamp
Henry Müller
Stefanie Heller
Chlud Kaddor
Ilona Gasser
Leo Eberl
Gasser, I.
Cardinale, M.
Muller, H.
Heller, S.
Eberl, L.
Lindenkamp, N.
Kaddor, C.
Steinbuchel, A.
Berg, G.
University of Zurich
Berg, G
Source :
Plant and Soil. 347:125-136
Publication Year :
2011
Publisher :
Springer Science and Business Media LLC, 2011.

Abstract

Members of the genus Burkholderia are highly versatile bacteria that can be beneficial as well as pathogenic for their eukaryotic hosts. Furthermore, many strains exhibit a remarkable biotechnological potential. To study the ecosystem function and lifestyle of B. terricola, we analysed the interactions with plants and survival in soil as well as the mechanisms behind it. We used a combination of in vitro and ad planta assays to study Burkholderia-plant interaction and assess the role of poly-β-hydroxybutyrate (PHB). Additionally, DsRed-labelled bacteria were analysed by confocal laser scanning microscopy (CLSM) to study root colonisation. B. terricola ZR2-12 treatment resulted in enhanced growth of sugar beet plants with a more than doubled biomass relative to the non-treated control. The strain was a remarkable good root coloniser, which was found in rhizosphere as well as endorhiza of sugar beet up to 10 log10 CFU g−1. Using CLSM, we observed that ZR2-12 cells form large micro-colonies along the apoplastic spaces of the root. Xylem vessels were colonised by smaller aggregates and single cells, whereas in root tips mainly single cells were present. The colonisation patterns differed strongly between older and younger parts of the roots. PHB production of ZR2-12 (up to 70% (w/w) of cell dry mass) provided a competitive advantage for rhizosphere colonisation. B. terricola ZR2-12 belongs to the plant-associated Burkholderia cluster with biotechnological potential due to its excellent root colonisation and plant growth promotion.

Details

ISSN :
15735036 and 0032079X
Volume :
347
Database :
OpenAIRE
Journal :
Plant and Soil
Accession number :
edsair.doi.dedup.....9c0ef31b00051526cc5042e6fc3f8712