Back to Search Start Over

RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma

Authors :
John M. Maris
Kristopher R. Bosse
Cynthia Winter
Rachel Sennett
Michael P. LaQuaglia
Jonathan Huggins
Patrick A. Mayes
Kristina A. Cole
Sharon J. Diskin
Edward F. Attiyeh
Marci Laudenslager
Chase Hulderman
Yael P. Mosse
Andrew C. Wood
Geoffrey T. Norris
Jayanti Jagannathan
Mike R. Russell
Source :
Proceedings of the National Academy of Sciences. 108:3336-3341
Publication Year :
2011
Publisher :
Proceedings of the National Academy of Sciences, 2011.

Abstract

Neuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent. CHK1 mRNA expression was higher in MYC–Neuroblastoma-related (MYCN)– amplified ( P < 0.0001) and high-risk ( P = 0.03) tumors. Western blotting revealed that CHK1 was constitutively phosphorylated at the ataxia telangiectasia response kinase target site Ser345 and the autophosphorylation site Ser296 in neuroblastoma cell lines. This pattern was also seen in six of eight high-risk primary tumors but not in control nonneuroblastoma cell lines or in seven of eight low-risk primary tumors. Neuroblastoma cells were sensitive to the two CHK1 inhibitors SB21807 and TCS2312, with median IC 50 values of 564 nM and 548 nM, respectively. In contrast, the control lines had high micromolar IC 50 values, indicating a strong correlation between CHK1 phosphorylation and CHK1 inhibitor sensitivity ( P = 0.0004). Furthermore, cell cycle analysis revealed that CHK1 inhibition in neuroblastoma cells caused apoptosis during S-phase, consistent with its role in replication fork progression. CHK1 inhibitor sensitivity correlated with total MYC(N) protein levels, and inducing MYCN in retinal pigmented epithelial cells resulted in CHK1 phosphorylation, which caused growth inhibition when inhibited. These data show the power of a functional RNAi screen to identify tractable therapeutical targets in neuroblastoma and support CHK1 inhibition strategies in this disease.

Details

ISSN :
10916490 and 00278424
Volume :
108
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....9c52e6367a3299a0a5146a4dab87c468