Back to Search Start Over

Improving Multivariate Time Series Forecasting with Random Walks with Restarts on Causality Graphs

Authors :
Lotfi Lakhal
Youssef Hmamouche
Piotr Przymus
Alain Casali
Laboratoire d'informatique Fondamentale de Marseille (LIF)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Laboratoire d'Informatique et Systèmes (LIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Data Mining at scale (DANA)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Informatique de Marseille (LIM)
Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Source :
2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017 IEEE International Conference on Data Mining Workshops (ICDMW), Nov 2017, New Orleans, United States. pp.924-931, ⟨10.1109/ICDMW.2017.127⟩, ICDM Workshops
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Forecasting models that utilize multiple predictors are gaining popularity in a variety of fields. In some cases they allow constructing more precise forecasting models, leveraging the predictive potential of many variables. Unfortunately, in practice we do not know which observed predictors have a direct impact on the target variable. Moreover, adding unrelated variables may diminish the quality of forecasts. Thus, constructing a set of predictor variables that can be used in a forecast model is one of the greatest challenges in forecasting. We propose a new selection model for predictor variables based on the directed causality graph and a modification of the random walk with restarts model. Experiments conducted using the two popular macroeconomics sets, from the US and Australia, show that this simple and scalable approach performs well compared to other well established methods.

Details

Language :
English
Database :
OpenAIRE
Journal :
2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017 IEEE International Conference on Data Mining Workshops (ICDMW), Nov 2017, New Orleans, United States. pp.924-931, ⟨10.1109/ICDMW.2017.127⟩, ICDM Workshops
Accession number :
edsair.doi.dedup.....9c59602886b1a9357d7722e8af896fdd
Full Text :
https://doi.org/10.1109/ICDMW.2017.127⟩