Back to Search Start Over

Stochastic binary problems with simple penalties for capacity constraints violations

Authors :
Martine Labbé
Bernard Fortz
François Louveaux
Michael Poss
Fortz, Bernard
Graphes et Optimisation Mathématique [Bruxelles] (GOM)
Université libre de Bruxelles (ULB)
Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM)
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc)
Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Mathematical Programming, Mathematical Programming, Springer Verlag, 2013, 138 (1-2), pp.199-221
Publication Year :
2013
Publisher :
Springer-Verlag GmbH and Co. KG, 2013.

Abstract

SCOPUS: ar.j; International audience; This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity following independent random variables and prove that the problem is weakly NP -hard in general. We provide pseudo-polynomial algorithms for three special cases of the problem: constant weights and capacity uniformly distributed, subset sum with Gaussian weights and strictly positively distributed random capacity, and subset sum with constant weights and arbitrary random capacity. We then turn to a branch-and-cut algorithm based on the outer approximation of the objective function. We provide computational results for the stochastic knapsack problem (i) with Gaussian weights and constant capacity and (ii) with constant weights and capacity uniformly distributed, on randomly generated instances inspired by computational results for the knapsack problem.

Details

Language :
English
ISSN :
00255610 and 14364646
Volume :
138
Issue :
1-2
Database :
OpenAIRE
Journal :
Mathematical Programming
Accession number :
edsair.doi.dedup.....9c5ef68cb328eae48bcd4b0f6e0d50bb
Full Text :
https://doi.org/10.1007/s10107-012-0520-4