Back to Search Start Over

Investigating cell cycle-dependent gene expression in the context of nuclear architecture at a single allele resolution

Authors :
Shivnarayan Dhuppar
Aprotim Mazumder
Source :
Journal of Cell Science.
Publication Year :
2020
Publisher :
The Company of Biologists, 2020.

Abstract

Nuclear architecture is the organization of the genome within a cell nucleus with respect to different nuclear landmarks such as the nuclear lamina, nuclear matrix or nucleoli. Recently, nuclear architecture has emerged as a major regulator of gene expression in mammalian cells. However, studies connecting nuclear architecture with gene expression are largely population-averaged and do not report on the heterogeneity in genome organization or gene expression within a population. In this report we present a method for combining 3D DNA fluorescence in situ hybridization (FISH) with single-molecule RNA FISH (smFISH) and immunofluorescence to study nuclear architecture-dependent gene regulation on a cell-by-cell basis. We further combine our method with imaging-based cell cycle staging to correlate nuclear architecture with gene expression across the cell cycle. We present this in the context of the cyclin-A2 (CCNA2) gene, which has known cell cycle-dependent expression. We show that, across the cell cycle, the expression of a CCNA2 gene copy is stochastic and depends neither on its sub-nuclear position - which usually lies close to nuclear lamina - nor on the expression from other copies of the gene.This article has an associated First Person interview with the first author of the paper.

Details

ISSN :
14779137 and 00219533
Database :
OpenAIRE
Journal :
Journal of Cell Science
Accession number :
edsair.doi.dedup.....9ccaaab4c7c7306f03522cc1a39751a3