Back to Search Start Over

Gentle Introduction to the Statistical Foundations of False Discovery Rate in Quantitative Proteomics

Authors :
Thomas Burger
Etude de la dynamique des protéomes (EDyP )
Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Tardif, Marianne
Source :
Journal of Proteome Research, Journal of Proteome Research, 2017, 17 (1), pp.12-22. ⟨10.1021/acs.jproteome.7b00170⟩, Journal of Proteome Research, American Chemical Society, 2017, 17 (1), pp.12-22. ⟨10.1021/acs.jproteome.7b00170⟩
Publication Year :
2017

Abstract

International audience; The vocabulary of theoretical statistics can be difficult to embrace from the viewpoint of computational proteomics research, even though the notions it conveys are essential to publication guidelines. For example, “adjusted p-values”, “q-values”, and “false discovery rates” are essentially similar concepts, whereas “false discovery rate” and “false discovery proportion” must not be confused, even though “rate” and “proportion” are related in everyday language. In the interdisciplinary context of proteomics, such subtleties may cause misunderstandings. This article aims to provide an easy-to-understand explanation of these four notions (and a few other related ones). Their statistical foundations are dealt with from a perspective that largely relies on intuition, addressing mainly protein quantification but also, to some extent, peptide identification. In addition, a clear distinction is made between concepts that define an individual property (i.e., related to a peptide or a protein) and those that define a set property (i.e., related to a list of peptides or proteins).

Details

ISSN :
15353907 and 15353893
Volume :
17
Issue :
1
Database :
OpenAIRE
Journal :
Journal of proteome research
Accession number :
edsair.doi.dedup.....9cd4f76abae06200c8d1e04c462a98b6
Full Text :
https://doi.org/10.1021/acs.jproteome.7b00170⟩