Back to Search Start Over

Controller design for polymer electrolyte membrane fuel cell systems for automotive applications

Authors :
Juan Carlos Carracedo Gomez
Attila Husar
Maria Pina Serra
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids
Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
European Commission
Ministerio de Economía y Competitividad (España)
Fuel Cells and Hydrogen 2 Joint Undertaking
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2021

Abstract

Continuous developments in Proton Exchange Membrane Fuel Cells (PEMFC) make them a promising technology to achieve zero emissions in multiple applications including mobility. Incremental advancements in fuel cells materials and manufacture processes make them now suitable for commercialization. However, the complex operation of fuel cell systems in automotive applications has some open issues yet. This work develops and compares three different controllers for PEMFC systems in automotive applications. All the controllers have a cascade control structure, where a generator of setpoints sends references to the subsystems controllers with the objective to maximize operational efficiency. To develop the setpoints generators, two techniques are evaluated: off-line optimization and Model Predictive Control (MPC). With the first technique, the optimal setpoints are given by a map, obtained off-line, of the optimal steady state conditions and corresponding setpoints. With the second technique, the setpoints time profiles that maximize the efficiency in an incoming time horizon are continuously computed. The proposed MPC architecture divides the fast and slow dynamics in order to reduce the computational cost. Two different MPC solutions have been implemented to deal with this fast/slow dynamics separation. After the integration of the setpoints generators with the subsystems controllers, the different control systems are tested and compared using a dynamic detailed model of the automotive system in the INN-BALANCE project running under the New European Driving Cycle.<br />This work was supported in part by the Spanish national project DOVELAR (RTI2018-096001-B-C32, MINECO/FEDER) also in part by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI (MDM-2016-0656), and finally in part by the Fuel Cells and Hydrogen 2 Joint Undertaking under Grant INN-BALANCE 735969. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and Hydrogen Europe and N. ERGHY.

Details

Language :
English
Database :
OpenAIRE
Journal :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....9d1d7ff677ec5583a23cabde52ef75e2