Back to Search Start Over

Role of neurotrophins on postnatal neurogenesis in the thalamus: prenatal exposure to ethanol

Authors :
Sandra M. Mooney
Michael W. Miller
Source :
Neuroscience. 179:256-266
Publication Year :
2011
Publisher :
Elsevier BV, 2011.

Abstract

A second wave of neuronal generation occurs in the ventrobasal nucleus of the rat thalamus (VB) during the first three postnatal weeks. The present study tested the hypotheses (1) that postnatal neurogenesis in the VB is neurotrophin-regulated and (2) that ethanol-induced changes in this proliferation are mediated by neurotrophins. The first studies examined the effects of neurotrophins on the numbers of cycling cells in ex vivo preparations of the VB from three-day-old rats. The proportion of cycling (Ki-67-positive) VB cells was higher in cultured thalamic slices treated with neurotrophins than in controls. Interestingly, this increase occurred with nerve growth factor (NGF) alone or with a combination of NGF and brain-derived neurotrophic factor (BDNF), but not with BDNF alone. Based on these data, the VBs from young offspring of pregnant rats fed an ethanol-containing or an isocaloric non-alcoholic liquid diet were examined between postnatal day (P) 1 and P31. Studies used enzyme-linked immunosorbent assays and immunoblots to explore the effects of ethanol on the expression of neurotrophins, their receptors, and representative signaling proteins. Ethanol altered the expression of neurotrophins and receptors throughout the first postnatal month. Expression of NGF increased, but there was no change in the expression of BDNF. The high affinity receptors (TrkA and TrkB) were unchanged but ethanol decreased expression of the low affinity receptor, p75. One downstream signaling protein, extracellular signal-regulated kinase (ERK), decreased but Akt expression was unchanged. Thus, postnatal cell proliferation in the VB of young rat pups is neurotrophin-responsive and is affected by ethanol.

Details

ISSN :
03064522
Volume :
179
Database :
OpenAIRE
Journal :
Neuroscience
Accession number :
edsair.doi.dedup.....9e90b59b377f39cde7735a72af59b103