Back to Search
Start Over
Collective canard explosions of globally-coupled rotators with adaptive coupling
- Source :
- Chaos, solitons and fractals 153 (2021): 111592-1–111592-8. doi:10.1016/j.chaos.2021.111592, info:cnr-pdr/source/autori:Ciszak M.; Olmi S.; Innocenti G.; Torcini A.; Marino F./titolo:Collective canard explosions of globally-coupled rotators with adaptive coupling/doi:10.1016%2Fj.chaos.2021.111592/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:111592-1/pagina_a:111592-8/intervallo_pagine:111592-1–111592-8/volume:153
- Publication Year :
- 2021
- Publisher :
- arXiv, 2021.
-
Abstract
- Canards, special trajectories that follow invariant repelling slow manifolds for long time intervals, have been frequently observed in slow-fast systems of either biological, chemical and physical nature. Here, collective canard explosions are demonstrated in a population of globally-coupled phase-rotators subject to adaptive coupling. In particular, we consider a bimodal Kuramoto model displaying coexistence of asynchronous and partially synchronized dynamics subject to a linear global feedback. A detailed geometric singular perturbation analysis of the associated mean-field model allows us to explain the emergence of collective canards in terms of the stability properties of the one-dimensional critical manifold, near which the slow macroscopic dynamics takes place. We finally show how collective canards and related manifolds gradually emerge in the globally-coupled system for increasing system sizes, in spite of the trivial dynamics of the uncoupled rotators.<br />Comment: 6 figures
- Subjects :
- General Mathematics
Population
Critical manifold
General Physics and Astronomy
FOS: Physical sciences
Dynamical Systems (math.DS)
Stability (probability)
FOS: Mathematics
Mathematics - Dynamical Systems
education
Physics
education.field_of_study
Applied Mathematics
Kuramoto model
Statistical and Nonlinear Physics
Disordered Systems and Neural Networks (cond-mat.dis-nn)
Invariant (physics)
Condensed Matter - Disordered Systems and Neural Networks
Nonlinear Sciences - Chaotic Dynamics
Nonlinear Sciences - Adaptation and Self-Organizing Systems
Coupling (physics)
Classical mechanics
Singular perturbation analysis
Asynchronous communication
Adaptive coupling
Canard explosion
Chemical nature
Global feedback
Kuramoto models
Phase rotator
Physical nature
Slow manifolds
Slow-fast systems
Time interval
Chaotic Dynamics (nlin.CD)
Adaptation and Self-Organizing Systems (nlin.AO)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Chaos, solitons and fractals 153 (2021): 111592-1–111592-8. doi:10.1016/j.chaos.2021.111592, info:cnr-pdr/source/autori:Ciszak M.; Olmi S.; Innocenti G.; Torcini A.; Marino F./titolo:Collective canard explosions of globally-coupled rotators with adaptive coupling/doi:10.1016%2Fj.chaos.2021.111592/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:111592-1/pagina_a:111592-8/intervallo_pagine:111592-1–111592-8/volume:153
- Accession number :
- edsair.doi.dedup.....9efd5a725df7c38d8b87f29a606a5326
- Full Text :
- https://doi.org/10.48550/arxiv.2110.10473