Back to Search Start Over

Collective canard explosions of globally-coupled rotators with adaptive coupling

Authors :
Marzena Ciszak
Francesco Marino
Alessandro Torcini
Simona Olmi
Giacomo Innocenti
Source :
Chaos, solitons and fractals 153 (2021): 111592-1–111592-8. doi:10.1016/j.chaos.2021.111592, info:cnr-pdr/source/autori:Ciszak M.; Olmi S.; Innocenti G.; Torcini A.; Marino F./titolo:Collective canard explosions of globally-coupled rotators with adaptive coupling/doi:10.1016%2Fj.chaos.2021.111592/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:111592-1/pagina_a:111592-8/intervallo_pagine:111592-1–111592-8/volume:153
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Canards, special trajectories that follow invariant repelling slow manifolds for long time intervals, have been frequently observed in slow-fast systems of either biological, chemical and physical nature. Here, collective canard explosions are demonstrated in a population of globally-coupled phase-rotators subject to adaptive coupling. In particular, we consider a bimodal Kuramoto model displaying coexistence of asynchronous and partially synchronized dynamics subject to a linear global feedback. A detailed geometric singular perturbation analysis of the associated mean-field model allows us to explain the emergence of collective canards in terms of the stability properties of the one-dimensional critical manifold, near which the slow macroscopic dynamics takes place. We finally show how collective canards and related manifolds gradually emerge in the globally-coupled system for increasing system sizes, in spite of the trivial dynamics of the uncoupled rotators.<br />Comment: 6 figures

Details

Database :
OpenAIRE
Journal :
Chaos, solitons and fractals 153 (2021): 111592-1–111592-8. doi:10.1016/j.chaos.2021.111592, info:cnr-pdr/source/autori:Ciszak M.; Olmi S.; Innocenti G.; Torcini A.; Marino F./titolo:Collective canard explosions of globally-coupled rotators with adaptive coupling/doi:10.1016%2Fj.chaos.2021.111592/rivista:Chaos, solitons and fractals/anno:2021/pagina_da:111592-1/pagina_a:111592-8/intervallo_pagine:111592-1–111592-8/volume:153
Accession number :
edsair.doi.dedup.....9efd5a725df7c38d8b87f29a606a5326
Full Text :
https://doi.org/10.48550/arxiv.2110.10473