Back to Search Start Over

Analysis of thermal dilution experiments with Distributed Temperature Sensing for fractured rock characterization

Authors :
Klepikova, Maria
Brixel, Bernard
Roubinet, Delphine
Géosciences Rennes (GR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Geological Institute [ETH Zürich]
Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Géosciences Montpellier
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Université de Montpellier (UM)
Swiss Commission for Technology and Innovation (CTI) grant 838508
ETH Foundation
Royal Dutch Shell
Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE) Grant SEED-17
European Project: 838508
Source :
Journal of Hydrology, Journal of Hydrology, 2022, 610, pp.127874. ⟨10.1016/j.jhydrol.2022.127874⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Thermal dilution experiments with Fiber-Optic Distributed Temperature Sensing (FO-DTS) were conducted at the In-situ Stimulation and Circulation (ISC) rock laboratory, at the Grimsel Test Site (GTS) in Switzerland. The experiment consists in replacing the total volume of a borehole with a warmer water and monitoring the rate of temperature increase and decrease during the heating and cooling periods, respectively. The changes in temperature monitored in depth and time under various hydraulic conditions and in different boreholes, are used to investigate the information provided by thermal dilution experiments in terms of groundwater flow and thermal properties in low-permeable fractured crystalline rock. The data analysis, and the use of analytical and numerical solutions for reproducing this data in the context of pure diffusion and advection-diffusion scenarios, lead to the following improvements and conclusions. (i) The formation thermal conductivity is estimated along the borehole by inverting the data collected under ambient conditions with a simple analytical solution. The estimated values are consistent with laboratory estimates. The method presents the advantage of requiring much shorter experiments than existing methods based on standard active-line-source (ALS) experiments, i.e., several hours versus the traditional 1-2 days. (ii) Hydraulically active fractures connecting boreholes are detected from experiments conducted under cross-borehole forced hydraulic conditions. (iii) The formation thermal conductivity and fracture flow velocity have a distinguished impact on the temperature anomalies for some ranges of these property values, implying that both properties can be estimated from well-parametrized experiments.

Details

Language :
English
ISSN :
00221694
Database :
OpenAIRE
Journal :
Journal of Hydrology, Journal of Hydrology, 2022, 610, pp.127874. ⟨10.1016/j.jhydrol.2022.127874⟩
Accession number :
edsair.doi.dedup.....9f13126681542590a254a925e9c037a4
Full Text :
https://doi.org/10.1016/j.jhydrol.2022.127874⟩