Back to Search
Start Over
NON-DESTRUCTIVE MONITORING OF RICE BY HYPERSPECTRAL IN-FIELD SPECTROMETRY AND UAV-BASED REMOTE SENSING: CASE STUDY OF FIELD-GROWN RICE IN NORTH RHINE-WESTPHALIA, GERMANY
- Source :
- The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLI-B1, Pp 1071-1077 (2016)
- Publication Year :
- 2016
- Publisher :
- Copernicus GmbH, 2016.
-
Abstract
- In the context of an increasing world population, the demand for agricultural crops is continuously rising. Especially rice plays a key role in food security, not only in Asia. To increase crop production of rice, either productivity of plants has to be improved or new cultivation areas have to be found. In this context, our study investigated crop growth of paddy rice (Oryza Sativa J.) in Germany. An experimental field in the vegetation period of 2014 with two nitrogen treatments was conducted using remote sensing methods. The research project focussed on two main aspects: (1) the potential of UAV-based and hyperspectral remote sensing methods to monitor selected growth parameters at different phenological stages; (2) the potential of paddy rice cultivation under the present climate condition in western Germany. We applied a low-cost UAV-system (Unmanned Aerial Vehicle) to generate high resolution Crop Surface Models (CSM). These were compared with hyperspectral in-field measurements and directly measured agronomic parameters (fresh and dry aboveground biomass (AGB), leaf-area-index (LAI) and plant nitrogen concentration (PNC)). For all acquisition dates we could determine single in-field structures in the CSM (e.g. distribution of hills) and different growth characteristics between the nitrogen treatments. Especially in the second half of the growing season, the plants with higher nitrogen availability were about 25 – 30 % larger. The plant height in the CSM correlates particularly with fresh AGB and the LAI (R2 > 0.8). Thus, the conducted methods for plant growth monitoring can be a contribution for precision agriculture approaches.
- Subjects :
- lcsh:Applied optics. Photonics
Oryza sativa
010504 meteorology & atmospheric sciences
Phenology
business.industry
lcsh:T
Growing season
lcsh:TA1501-1820
Context (language use)
04 agricultural and veterinary sciences
Vegetation
01 natural sciences
lcsh:Technology
Crop
Geography
Agriculture
lcsh:TA1-2040
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Precision agriculture
business
lcsh:Engineering (General). Civil engineering (General)
0105 earth and related environmental sciences
Remote sensing
Subjects
Details
- ISSN :
- 21949034
- Database :
- OpenAIRE
- Journal :
- ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Accession number :
- edsair.doi.dedup.....9f1b9271fc70b1774f573b930a5f4992
- Full Text :
- https://doi.org/10.5194/isprsarchives-xli-b1-1071-2016