Back to Search Start Over

Long-term trends in visibility and at Chengdu, China

Authors :
Nan Li
Junji Cao
Ping Wang
Jun Tao
Zhenxing Shen
Qiyuan Wang
Suixin Liu
Xiaoli Su
L.-W. Antony Chen
Wenting Dai
Source :
PLoS ONE, Vol 8, Iss 7, p e68894 (2013), PLoS ONE
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Long-term (1973 to 2010) trends in visibility at Chengdu, China were investigated using meteorological data from the U.S. National Climatic Data Center. The visual range exhibited a declining trend before 1982, a slight increase between 1983 and 1995, a sharp decrease between 1996 and 2005, and some improvements after 2006. The trends in visibility were generally consistent with the economic development and implementation of pollution controls in China. Intensive PM2.5 measurements were conducted from 2009 to 2010 to determine the causes of visibility degradation. An analysis based on a modification of the IMPROVE approach indicated that PM2.5 ammonium bisulfate contributed 27.7% to the light extinction coefficient (bext ); this was followed by organic mass (21.7%), moisture (20.6%), and ammonium nitrate (16.3%). Contributions from elemental carbon (9.4%) and soil dust (4.3%) were relatively minor. Anthropogenic aerosol components (sulfate, nitrate, and elemental carbon) and moisture at the surface also were important determinants of the aerosol optical depth (AOD) at 550 nm, and the spatial distributions of both bext and AOD were strongly affected by regional topography. A Positive Matrix Factorization receptor model suggested that coal combustion was the largest contributor to PM2.5 mass (42.3%) and the dry-air light-scattering coefficient (47.7%); this was followed by vehicular emissions (23.4% and 20.5%, respectively), industrial emissions (14.9% and 18.8%), biomass burning (12.8% and 11.9%), and fugitive dust (6.6% and 1.1%). Our observations provide a scientific basis for improving visibility in this area.

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
7
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....9f3b3b997863f0af26646a1b71613906