Back to Search Start Over

Long non-coding RNA BDNF-AS modulates osteogenic differentiation of bone marrow-derived mesenchymal stem cells

Authors :
Tao Lin
Dehao Fu
Xiaobo Feng
Shuhua Yang
Cao Yang
Xianzhe Liu
Source :
Molecular and cellular biochemistry. 445(1-2)
Publication Year :
2017

Abstract

For patients with osteoporosis, the inability of osteogenic differentiation is the key reason for bone loss. In this study, we investigated the expression and function of long non-coding RNA BDNF-AS in mesenchymal stem cell-derived osteogenic differentiation. Mouse bone marrow-derived mesenchymal stem cells (BMMSCs) were cultured in vitro and induced toward osteogenic differentiation. Quantitative real-time PCR (qRT-PCR) was used to evaluate gene expressions of BDNF-AS and BDNF during osteogenic differentiation. BMMSCs were also extracted from ovariectomized (OVX) mice. The dynamic change of BDNF-AS in OVX-derived BMMSCs during osteogenic differentiation was also evaluated. Lentivirus was used to upregulate BDNF-AS in BMMSCs. The effects of BDNF-AS upregulation on BMMSCs' proliferation and osteogenic differentiation were then evaluated. In addition, qRT-PCR and western blot were applied to further examine the effect of BDNF-AS upregulation on osteogenesis-associated signaling pathways, including BDNF, OPN, and Runx2, in osteogenic differentiation. BDNF-AS was downregulated, whereas BDNF was upregulated in osteogenic differentiation of BMMSCs. Among OVX-derived BMMSCs, BDNF-AS expression was upregulated during osteogenic differentiation. Lentivirus-induced BDNF-AS upregulation promoted BMMSCs self-proliferation but inhibited osteogenic differentiation, as demonstrated by proliferation, alizarin red staining, and alkaline phosphatase activity assays, respectively. QRT-PCR and western blot demonstrated that BDNF, OPN, and Runx2 were downregulated by BDNF-AS upregulation in the differentiated BMMSCs. BDNF-AS is dynamically regulated in osteogenic differentiation. Upregulating BDNF-AS inhibits osteogenesis, possibly through inverse regulation on BDNF and osteogenic signaling pathways.

Details

ISSN :
15734919
Volume :
445
Issue :
1-2
Database :
OpenAIRE
Journal :
Molecular and cellular biochemistry
Accession number :
edsair.doi.dedup.....9fba4e890efece07308697584a7519eb