Back to Search
Start Over
Structure, function, and mechanism of proline utilization A (PutA)
- Source :
- Archives of Biochemistry and Biophysics. 632:142-157
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Proline has important roles in multiple biological processes such as cellular bioenergetics, cell growth, oxidative and osmotic stress response, protein folding and stability, and redox signaling. The proline catabolic pathway, which forms glutamate, enables organisms to utilize proline as a carbon, nitrogen, and energy source. FAD-dependent proline dehydrogenase (PRODH) and NAD+-dependent glutamate semialdehyde dehydrogenase (GSALDH) convert proline to glutamate in two sequential oxidative steps. Depletion of PRODH and GSALDH in humans leads to hyperprolinemia, which is associated with mental disorders such as schizophrenia. Also, some pathogens require proline catabolism for virulence. A unique aspect of proline catabolism is the multifunctional proline utilization A (PutA) enzyme found in Gram-negative bacteria. PutA is a large (> 1000 residues) bifunctional enzyme that combines PRODH and GSALDH activities into one polypeptide chain. In addition, some PutAs function as a DNA-binding transcriptional repressor of proline utilization genes. This review describes several attributes of PutA that make it a remarkable flavoenzyme: (1) diversity of oligomeric state and quaternary structure; (2) substrate channeling and enzyme hysteresis; (3) DNA-binding activity and transcriptional repressor function; and (4) flavin redox dependent changes in subcellular location and function in response to proline (functional switching).
- Subjects :
- 0301 basic medicine
Proline
Substrate channeling
Biophysics
Biology
Biochemistry
Article
03 medical and health sciences
chemistry.chemical_compound
Proline dehydrogenase
Bacterial Proteins
Gram-Negative Bacteria
Proline Oxidase
medicine
Animals
Humans
Amino Acid Metabolism, Inborn Errors
Molecular Biology
Flavin adenine dinucleotide
Flavoproteins
030102 biochemistry & molecular biology
Proline oxidase
Membrane Proteins
medicine.disease
1-Pyrroline-5-Carboxylate Dehydrogenase
030104 developmental biology
chemistry
Flavin-Adenine Dinucleotide
Hyperprolinemia
Energy source
Subjects
Details
- ISSN :
- 00039861
- Volume :
- 632
- Database :
- OpenAIRE
- Journal :
- Archives of Biochemistry and Biophysics
- Accession number :
- edsair.doi.dedup.....a081abd2b1955bd09a7c884e446a4afd