Back to Search
Start Over
An interpretable machine learning prognostic system for locoregionally advanced nasopharyngeal carcinoma based on tumor burden features
- Source :
- Oral oncology. 118
- Publication Year :
- 2020
-
Abstract
- Objectives We aimed to build a survival system by combining a highly-accurate machine learning (ML) model with explainable artificial intelligence (AI) techniques to predict distant metastasis in locoregionally advanced nasopharyngeal carcinoma (NPC) patients using magnetic resonance imaging (MRI)-based tumor burden features. Materials and methods 1643 patients from three hospitals were enrolled according to set criteria. We employed ML to develop a survival model based on tumor burden signatures and all clinical factors. Shapley Additive exPlanations (SHAP) was utilized to explain prediction results and interpret the complex non-linear relationship among features and distant metastasis. We also constructed other models based on routinely used cancer stages, Epstein-Barr virus (EBV) DNA, or other clinical features for comparison. Concordance index (C-index), receiver operating curve (ROC) analysis and decision curve analysis (DCA) were executed to assess the effectiveness of the models. Results Our proposed system consistently demonstrated promising performance across independent cohorts. The concordance indexes were 0.773, 0.766 and 0.760 in the training, internal validation and external validation sets. SHAP provided personalized protective and risk factors for each NPC patient and uncovered some novel non-linear relationships between features and distant metastasis. Furthermore, high-risk patients who received induction chemotherapy (ICT) and concurrent chemoradiotherapy (CCRT) had better 5-year distant metastasis-free survival (DMFS) than those who only received CCRT, whereas ICT + CCRT and CCRT had similar DMFS in low-risk patients. Conclusions The interpretable machine learning system demonstrated superior performance in predicting metastasis in locoregionally advanced NPC. High-risk patients might benefit from ICT.
- Subjects :
- Cancer Research
Epstein-Barr Virus Infections
Herpesvirus 4, Human
Concordance
Tumor burden
Machine learning
computer.software_genre
Metastasis
Machine Learning
03 medical and health sciences
0302 clinical medicine
Medicine
Humans
030223 otorhinolaryngology
Survival analysis
Nasopharyngeal Carcinoma
Receiver operating characteristic
business.industry
Induction chemotherapy
Cancer
Nasopharyngeal Neoplasms
Chemoradiotherapy
medicine.disease
Prognosis
Tumor Burden
Oncology
Nasopharyngeal carcinoma
030220 oncology & carcinogenesis
Artificial intelligence
Oral Surgery
business
computer
Subjects
Details
- ISSN :
- 18790593
- Volume :
- 118
- Database :
- OpenAIRE
- Journal :
- Oral oncology
- Accession number :
- edsair.doi.dedup.....a095b4cd252ca2e66e0be26c1ad6b491