Back to Search
Start Over
Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks
- Source :
- Biochemical Engineering Journal. 35:48-55
- Publication Year :
- 2007
- Publisher :
- Elsevier BV, 2007.
-
Abstract
- An experimental mixture design coupled with data analysis by means of both response surface methodology (RSM) and artificial neural networks (ANNs) followed by multiple response optimization through a desirability function, was applied to the production of δ-endotoxins from Bacillus thuringiensis var. kurstaki. The composition of a culture medium was defined by testing three regional effluents: milky effluent, beer wastewater and sugar cane molasses. Both RSM and ANNs accomplished the goal pursued in this work, by predicting the optimal mixture of the effluents. ANNs provided more reliable results due to the complexity of the models to be fitted. The optimal selected blend was: 74%, 26% and 0%, respectively for each the above-mentioned effluents. Fil: Moreira, Guilherme. Universidad Nacional del Litoral; Argentina Fil: Micheloud, Gabriela Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Beccaria, Alejandro José. Universidad Nacional del Litoral; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina
- Subjects :
- Environmental Engineering
Artificial neural networks
Otras Ingenierías y Tecnologías
biology
Artificial neural network
Sugar cane
Biomedical Engineering
Environmental engineering
Bioengineering
Mixture design
INGENIERÍAS Y TECNOLOGÍAS
biology.organism_classification
Pulp and paper industry
Modelling
Desirability function
Wastewater
Bacillus thuringiensis
Multiple response optimization
Response surface methodology
Effluent
Bacillus thuringiensis var. kurstaki
Biotechnology
Mathematics
Subjects
Details
- ISSN :
- 1369703X
- Volume :
- 35
- Database :
- OpenAIRE
- Journal :
- Biochemical Engineering Journal
- Accession number :
- edsair.doi.dedup.....a0d7f225671064bf1139f9c322f3b5db