Back to Search Start Over

Jordan blocks of nilpotent elements in some irreducible representations of classical groups in good characteristic

Authors :
Mikko Korhonen
Publication Year :
2020

Abstract

Let $G$ be a classical group with natural module $V$ and Lie algebra $\mathfrak{g}$ over an algebraically closed field $K$ of good characteristic. For rational irreducible representations $f: G \rightarrow \operatorname{GL}(W)$ occurring as composition factors of $V \otimes V^*$, $\wedge^2(V)$, and $S^2(V)$, we describe the Jordan normal form of $\mathrm{d} f(e)$ for all nilpotent elements $e \in \mathfrak{g}$. The description is given in terms of the Jordan block sizes of the action of $e$ on $V \otimes V^*$, $\wedge^2(V)$, and $S^2(V)$, for which recursive formulae are known. Our results are in analogue to earlier work (Proc. Amer. Math. Soc., 147 (2019) 4205-4219), where we considered these same representations and described the Jordan normal form of $f(u)$ for every unipotent element $u \in G$.<br />to appear in J. Pure Appl. Algebra

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a0da26460219714432298a28dbca22e4