Back to Search Start Over

Specific zinc-finger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function

Authors :
Karin Musier-Forsyth
Mark C. Williams
Robert J. Gorelick
Source :
Proceedings of the National Academy of Sciences. 99:8614-8619
Publication Year :
2002
Publisher :
Proceedings of the National Academy of Sciences, 2002.

Abstract

The nucleocapsid protein (NC) of HIV type 1 (HIV-1) is a nucleic acid chaperone that facilitates the rearrangement of nucleic acid secondary structure during reverse transcription. HIV-1 NC contains two CCHC-type zinc binding domains. Here, we use optical tweezers to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of wild-type and several mutant forms of HIV-1 NC with altered zinc-finger domains. Although all forms of NC lowered the cooperativity of the DNA helix–coil transition, subtle changes in the zinc-finger structures reduced NC's effect on the transition. The change in cooperativity of the DNA helix–coil transition correlates strongly with in vitro nucleic acid chaperone activity measurements and in vivo HIV-1 replication studies using the same NC mutants. Moreover, Moloney murine leukemia virus NC, which contains a single zinc finger, had little effect on transition cooperativity. These results suggest that a specific two-zinc-finger architecture is required to destabilize nucleic acids for optimal chaperone activity during reverse transcription in complex retroviruses such as HIV-1.

Details

ISSN :
10916490 and 00278424
Volume :
99
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....a10c50fb5f6332eca184e70d9497c1e7
Full Text :
https://doi.org/10.1073/pnas.132128999