Back to Search Start Over

Robust Stereo Visual-Inertial Odometry Using Nonlinear Optimization

Authors :
Yinglei Wang
Xinhui Bai
Rui Fang
Shujun Ma
Source :
Sensors (Basel, Switzerland), Sensors, Vol 19, Iss 17, p 3747 (2019), Sensors, Volume 19, Issue 17
Publication Year :
2019

Abstract

The fusion of visual and inertial odometry has matured greatly due to the complementarity of the two sensors. However, the use of high-quality sensors and powerful processors in some applications is difficult due to size and cost limitations, and there are also many challenges in terms of robustness of the algorithm and computational efficiency. In this work, we present VIO-Stereo, a stereo visual-inertial odometry (VIO), which jointly combines the measurements of the stereo cameras and an inexpensive inertial measurement unit (IMU). We use nonlinear optimization to integrate visual measurements with IMU readings in VIO tightly. To decrease the cost of computation, we use the FAST feature detector to improve its efficiency and track features by the KLT sparse optical flow algorithm. We also incorporate accelerometer bias into the measurement model and optimize it together with other variables. Additionally, we perform circular matching between the previous and current stereo image pairs in order to remove outliers in the stereo matching and feature tracking steps, thus reducing the mismatch of feature points and improving the robustness and accuracy of the system. Finally, this work contributes to the experimental comparison of monocular visual-inertial odometry and stereo visual-inertial odometry by evaluating our method using the public EuRoC dataset. Experimental results demonstrate that our method exhibits competitive performance with the most advanced techniques.

Details

ISSN :
14248220
Volume :
19
Issue :
17
Database :
OpenAIRE
Journal :
Sensors (Basel, Switzerland)
Accession number :
edsair.doi.dedup.....a1132b892febd633f93db8c08120086c