Back to Search Start Over

Interferometry with Bose-Einstein Condensates in Microgravity

Authors :
Steven E. Arnold
A. Vogel
Markus Krutzik
Sven Herrmann
W. Lewoczko-Adamczyk
Jan Rudolph
S. T. Seidel
Stephan Kleinert
Roeland J. M. Nolte
Ernst M. Rasel
Patrick Windpassinger
Theodor W. Hänsch
Nadine Meyer
Kai Bongs
E. Kajari
H. Ahlers
T. van Zoest
Max Schiemangk
Wolfgang P. Schleich
Wolfgang Zeller
Jakob Reichel
Hansjörg Dittus
T. Valenzuela
André Wenzlawski
Jonathan Ian Malcolm
Manuel Popp
Klaus Sengstock
Hauke Müntinga
Wolfgang Ertmer
Naceur Gaaloul
Christoph Grzeschik
Hannes Duncker
Thijs Wendrich
Claus Lämmerzahl
Albert Roura
W. Herr
Ortwin Hellmig
C. Gherasim
Michael Schneider
Achim Peters
Enno Giese
Vincenzo Tamma
Reinhold Walser
Dennis Becker
Source :
ResearcherID
Publication Year :
2013
Publisher :
arXiv, 2013.

Abstract

Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.<br />Comment: 8 pages, 3 figures; 8 pages of supporting material

Details

Database :
OpenAIRE
Journal :
ResearcherID
Accession number :
edsair.doi.dedup.....a1611460c23d07e95f2459fc7058dccc
Full Text :
https://doi.org/10.48550/arxiv.1301.5883