Back to Search
Start Over
NONLINEAR DYNAMICAL FRICTION OF A CIRCULAR-ORBIT PERTURBER IN A GASEOUS MEDIUM
- Source :
- The Astrophysical Journal. 725:1069-1081
- Publication Year :
- 2010
- Publisher :
- American Astronomical Society, 2010.
-
Abstract
- We use three-dimensional hydrodynamic simulations to investigate the nonlinear gravitational responses of gas to, and the resulting drag forces on, very massive perturbers moving on circular orbits. This work extends our previous studies that explored the cases of low-mass perturbers on circular orbits and massive perturbers on straight-line trajectories. The background medium is assumed to be non-rotating, adiabatic with index 5/3, and uniform with density rho0 and sound speed a0. We model the gravitating perturber using a Plummer sphere with mass Mp and softening radius rs in a uniform circular motion at speed Vp and orbital radius Rp, and run various models with differing R=rs/Rp, Mach=Vp/a0, and B=G*Mp/(a0^2*Rp). A quasi-steady density wake of a supersonic model consists of a hydrostatic envelope surrounding the perturber, an upstream bow shock, and a trailing low-density region. The continuous change in the direction of the perturber motion makes the detached shock distance reduced compared to the linear-trajectory cases, while the orbit-averaged gravity of the perturber gathers the gas toward the center of the orbit, modifying the background preshock density to rho1=(1 + 0.46B)*rho0 depending weakly on Mach. For sufficiently massive perturbers, the presence of a hydrostatic envelope makes the drag force smaller than the prediction of the linear perturbation theory, resulting in F = 4*pi*rho1*(G*Mp/Vp)^2 * (0.7/etaB) for etaB = B/(Mach^2 -1) > 0.1; the drag force for low-mass perturbers with etaB < 0.1 agrees well with the linear prediction. The nonlinear drag force becomes independent of R as long as R < etaB/2, which places an upper limit on the perturber size for accurate evaluation of the drag force in numerical simulations.<br />Accepted for publication in the ApJ
- Subjects :
- Physics
FOS: Physical sciences
Astronomy and Astrophysics
Mechanics
Astrophysics
Radius
Astrophysics - Astrophysics of Galaxies
law.invention
symbols.namesake
Circular motion
Mach number
Space and Planetary Science
Drag
law
Astrophysics of Galaxies (astro-ph.GA)
symbols
Supersonic speed
Bow shock (aerodynamics)
Circular orbit
Hydrostatic equilibrium
Subjects
Details
- ISSN :
- 15384357 and 0004637X
- Volume :
- 725
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal
- Accession number :
- edsair.doi.dedup.....a16e3d98040c4dad0675065292636621