Back to Search
Start Over
Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-β Bioassay
- Source :
- ACS Applied Materials & Interfaces. 13:33937-33947
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- In this work, we fabricated a novel origami paper-based analytical device (oPAD) assisted by the nanostructuring effect of in situ Pd decoration of Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres, functionalized with their strongly enhanced electrocatalytic properties to realize an electrochemical and visual signal readout system in oPAD, for highly sensitive detection of amyloid-β (Aβ). The CuCo-CeO2-Pd nanospheres were introduced as an enhanced "signal transducer layer" on account of the electron transfer acceleration caused by catalyzing glucose to produce H2O2 for differential pulse voltammetry signal readout and further 3,3'5,5'-tetramethylbenzidine (TMB) oxidation for colorimetric analysis. Meanwhile, for achieving superior performance of the proposed oPAD, in situ growth of urchin-like gold nanoparticles (Au NPs) onto cellulose fibers was adopted to improve "the recognition layer" in favor of immobilizing antibodies for targeting Aβ through specific antigen-antibody interactions. Combined with the delicate design of oPAD, exhibiting actuation of the conversion procedure between hydrophobicity and hydrophilicity on paper tabs in the assay process, the oPAD successfully enabled sensitive diagnosis of Aβ in a linear range from 1.0 pM to 100 nM with a limit of detection of 0.05 pM (S/N = 3) for electrochemical detection, providing a reliable strategy for quantifying the Aβ protein in clinical applications. Ministry of Education (MOE) This work was financially supported by the Science and Technology Projects of University of Jinan (XKY2002), the Natural Science Foundation of Shandong Province (ZR2020MB057), the Singapore Ministry of Education (MOE AcRF Tier 1 RG176/16), the Taishan Scholars Program, the Case-by-Case Project for Top Outstanding Talents of Jinan, and the project of "20 Items of University" of Jinan (2018GXRC001).
- Subjects :
- Paper
In situ
Materials science
Metal Nanoparticles
Nanotechnology
Biosensing Techniques
Electrochemistry
Catalysis
Glucose Oxidase
Limit of Detection
General Materials Science
Detection limit
Amyloid beta-Peptides
Materials [Engineering]
Benzidines
Reproducibility of Results
Cerium
Electrochemical Techniques
Amyloid-Beta
Cellulose fiber
Chromogenic Compounds
Pd Decorating Doped Ceria
Linear range
Colloidal gold
Gold
Differential pulse voltammetry
Colorimetric analysis
Oxidation-Reduction
Nanospheres
Palladium
Subjects
Details
- ISSN :
- 19448252 and 19448244
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- ACS Applied Materials & Interfaces
- Accession number :
- edsair.doi.dedup.....a1b28805f93f0a73268c2e648c8a9705