Back to Search
Start Over
Programmable assembly of a metabolic pathway enzyme in a pre-packaged reusable bioMEMS device
- Source :
- Lab on a Chip. 8:420
- Publication Year :
- 2008
- Publisher :
- Royal Society of Chemistry (RSC), 2008.
-
Abstract
- We report a biofunctionalization strategy for the assembly of catalytically active enzymes within a completely packaged bioMEMS device, through the programmed generation of electrical signals at spatially and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase (Pfs), is genetically fused with a pentatyrosine "pro-tag" at its C-terminus. Signal responsive assembly is based on covalent conjugation of Pfs to the aminopolysaccharide, chitosan, upon biochemical activation of the pro-tag, followed by electrodeposition of the enzyme-chitosan conjugate onto readily addressable sites in microfluidic channels. Compared to traditional physical entrapment and surface immobilization approaches in microfluidic environments, our signal-guided electrochemical assembly is unique in that the enzymes are assembled under mild aqueous conditions with spatial and temporal programmability and orientational control. Significantly, the chitosan-mediated enzyme assembly can be reversed, making the bioMEMS reusable for repeated assembly and catalytic activity. Additionally, the assembled enzymes retain catalytic activity over multiple days, demonstrating enhanced enzyme stability. We envision that this assembly strategy can be applied to rebuild metabolic pathways in microfluidic environments for antimicrobial drug discovery.
- Subjects :
- chemistry.chemical_classification
Optics and Photonics
Miniaturization
Multiple days
Chemistry
Microfluidics
Biomedical Engineering
Bioengineering
Nanotechnology
General Chemistry
Biochemistry
Enzymes
Antimicrobial drug
Chitosan
chemistry.chemical_compound
Metabolic pathway
Enzyme
Covalent bond
Enzyme Stability
Electrodes
Conjugate
Subjects
Details
- ISSN :
- 14730189 and 14730197
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Lab on a Chip
- Accession number :
- edsair.doi.dedup.....a1b958e5117c04cd1ff006f5a67e324c
- Full Text :
- https://doi.org/10.1039/b713756g