Back to Search Start Over

Artificial Cognition in Production Systems

Authors :
Anna Schuboe
Christoph Ertelt
Alexander Bannat
W Tekouo
M. Ostgathe
Jürgen Blume
W Roesel
Thibault Bautze
Klaus Diepold
Gunther Reinhart
Claus Lenz
Frank Wallhoff
Thomas Ruehr
Ingo Stork genannt Wersborg
Alois Knoll
T Gyger
Kristina Shea
Florian Geiger
M. Wiesbeck
Michael Beetz
C. Lau
Sonja Stork
Michael F. Zaeh
Thomas Gmeiner
Publication Year :
2009

Abstract

Today's manufacturing and assembly systems have to be flexible to adapt quickly to an increasing number and variety of products, and changing market volumes. To manage these dynamics, several production concepts (e.g., flexible, reconfigurable, changeable or autonomous manufacturing and assembly systems) were proposed and partly realized in the past years. This paper presents the general principles of autonomy and the proposed concepts, methods and technologies to realize cognitive planning, cognitive control and cognitive operation of production systems. Starting with an introduction on the historical context of different paradigms of production (e.g., evolution of production and planning systems), different approaches for the design, planning, and operation of production systems are lined out and future trends towards fully autonomous components of an production system as well as autonomous parts and products are discussed. In flexible production systems with manual and automatic assembly tasks, human-robot cooperation is an opportunity for an ergonomic and economic manufacturing system especially for low lot sizes. The state-of-the-art and a cognitive approach in this area are outlined. Furthermore, introducing self-optimizing and self-learning control systems is a crucial factor for cognitive systems. This principles are demonstrated by a quality assurance and process control in laser welding that is used to perform improved quality monitoring. Finally, as the integration of human workers into the workflow of a production system is of the highest priority for an efficient production, worker guidance systems for manual assembly with environmentally and situationally dependent triggered paths on state-based graphs are described in this paper.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a1bea3396e2d13b3a110faebb9a74ba7