Back to Search Start Over

A streamlined implementation of the glutamine synthetase-based protein expression system

Authors :
Zhao Kun Hui
Nahid Rahman
Joanne E. Nettleship
Ana Filipa L.O.M. Santos
Ling-Pei Ho
Veronica T. Chang
Raymond J. Owens
Simon J. Davis
Rachel G. Knox
Source :
BMC Biotechnology
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

Background The glutamine synthetase-based protein expression system is widely used in industry and academia for producing recombinant proteins but relies on the cloning of transfected cells, necessitating substantial investments in time and handling. We streamlined the production of protein-producing cultures of Chinese hamster ovary cells using this system by co-expressing green fluorescent protein from an internal ribosomal entry site and selecting for high green fluorescent protein-expressing cells using fluorescence-activated cell sorting. Results Whereas other expression systems utilizing green fluorescent protein and fluorescence-activated cell sorting-based selection have relied on two or more sorting steps, we obtained stable expression of a test protein at levels >50% of that of an “average” clone and ~40% that of the “best” clone following a single sorting step. Versus clone-based selection, the principal savings are in the number of handling steps (reduced by a third), handling time (reduced by 70%), and the time needed to produce protein-expressing cultures (reduced by ~3 weeks). Coupling the glutamine synthetase-based expression system with product-independent selection in this way also facilitated the production of a hard-to-assay protein. Conclusion Utilizing just a single fluorescence-activated cell sorting-based selection step, the new streamlined implementation of the glutamine synthetase-based protein expression system offers protein yields sufficient for most research purposes, where

Details

ISSN :
14726750
Volume :
13
Database :
OpenAIRE
Journal :
BMC Biotechnology
Accession number :
edsair.doi.dedup.....a1c6d7ddee311e075183e244a5ce63cc
Full Text :
https://doi.org/10.1186/1472-6750-13-74