Back to Search
Start Over
COVID-19 infection and transmission includes complex sequence diversity
- Source :
- PLoS genetics. 18(9)
- Publication Year :
- 2022
-
Abstract
- SARS-CoV-2 whole genome sequencing has played an important role in documenting the emergence of polymorphisms in the viral genome and its continuing evolution during the COVID-19 pandemic. Here we present data from over 360 patients to characterize the complex sequence diversity of individual infections identified during multiple variant surges (e.g., Alpha and Delta; requiring ≥ 80% genome coverage and ≥100X read depth). Across our survey, we observed significantly increasing SARS-CoV-2 sequence diversity during the pandemic and frequent occurrence of multiple biallelic sequence polymorphisms in all infections. This sequence polymorphism shows that SARS-CoV-2 infections are heterogeneous mixtures. Convention for reporting microbial pathogens guides investigators to report a majority consensus sequence. In our study, we found that this approach would under-report at least 79% of the observed sequence variation. As we find that this sequence heterogeneity is efficiently transmitted from donors to recipients, our findings illustrate that infection complexity must be monitored and reported more completely to understand SARS-CoV-2 infection and transmission dynamics involving both immunocompetent and immunocompromised patients. Many of the nucleotide changes that would not be reported in a majority consensus sequence have now been observed as lineage defining SNPs in Omicron BA.1 and/or BA.2 variants. This suggests that minority alleles in earlier SARS-CoV-2 infections may play an important role in the continuing evolution of new variants of concern.AUTHOR SUMMARYEvolution of the virus causing COVID-19 (SARS-CoV-2) has been associated with significant transmission surges. With evolution of SARS-CoV-2, evidence has accumulated regarding increased transmissibility of lineages, varying severity of illness, evasion of vaccines and diagnostic tests. Continuous tracking of SARS-CoV-2 lineage evolution distills very large and complex viral sequence data sets down to consensus sequences that report the majority nucleotide at each of over 29,000 positions in the SARS-CoV-2 genome. We observe that this eliminates considerable sequence variation and leads to a significant underestimation of SARS-CoV-2 infection diversity and transmission complexity. Additionally, concentration on the majority consensus sequence diverts attention from genetic variation that may contribute significantly to the continuing evolution of the COVID-19 pandemic.
Details
- ISSN :
- 15537404
- Volume :
- 18
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- PLoS genetics
- Accession number :
- edsair.doi.dedup.....a1d55426387243d6a625eaac564cb11f