Back to Search Start Over

Inhibition of PI3K signaling triggered apoptotic potential of curcumin which is hindered by Bcl-2 through activation of autophagy in MCF-7 cells

Authors :
Narcin Palavan-Unsal
Özge Berrak
Ajda Coker-Gurkan
Pinar Obakan
Elif Damla Arisan
Yunus Akkoc
Source :
Biomedicine & Pharmacotherapy. 71:161-171
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Curcumin is a natural anti-cancer agent derived from turmeric (Curcuma longa). Curcumin triggers intrinsic apoptotic cell death by activating mitochondrial permeabilization due to the altered expression of pro-and anti-apoptotic Bcl-2 family members. Phosphoinositol-3-kinase (PI3K) and Akt, key molecular players in the survival mechanism, have been shown to be associated with the Bcl-2 signaling cascade; therefore, evaluating the therapeutic efficiency of drugs that target both survival and the apoptosis mechanism has gained importance in cancer therapy. We found that Bcl-2 overexpression is a limiting factor for curcumin-induced apoptosis in highly metastatic MCF-7 breast cancer cells. Forced overexpression of Bcl-2 also blocked curcumin-induced autophagy in MCF-7 cells, through its inhibitory interactions with Beclin-1. Pre-treatment of PI3K inhibitor LY294002 enhanced curcumin-induced cell death, apoptosis, and autophagy via modulating the expression of Bcl-2 family members and autophagosome formation in MCF-7 breast cancer cells. Atg7 silencing further increased apoptotic potential of curcumin in the presence or absence of LY294002 in wt and Bcl-2+ MCF-7 cells. The findings of this study support the hypothesis that blocking the PI3K/Akt pathway may further increased curcumin-induced apoptosis and overcome forced Bcl-2 expression level mediated autophagic responses against curcumin treatment in MCF-7 cells. (C) 2015 Elsevier Masson SAS. All rights reserved.

Details

ISSN :
07533322
Volume :
71
Database :
OpenAIRE
Journal :
Biomedicine & Pharmacotherapy
Accession number :
edsair.doi.dedup.....a1d9a75528e1788685b2c6891e67a966
Full Text :
https://doi.org/10.1016/j.biopha.2015.02.029