Back to Search Start Over

Neonatal hypoxic preconditioning involves vascular endothelial growth factor

Authors :
Daniel J. Hicklin
Fadia Medja
Jorge Gallego
Peter Carmeliet
Romain H. Fontaine
Philippe Leroux
Stéphane Marret
Vincent Laudenbach
Pierre Gressens
Source :
Neurobiology of Disease, Vol 26, Iss 1, Pp 243-252 (2007)
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

We studied hypoxic preconditioning (HxP) in the murine developing brain, focusing on the role for vascular endothelial growth factor (VEGF). Newborn mice were used as follows: (1) HxP (or normoxia) then intracerebral (i.c.) NMDA or AMPA-kainate agonist; (2) HxP then intraperitoneal (i.p.) anti-VEGFR2/Flk1 or anti-VEGFR1/Flt1 monoclonal blocking antibody (mAb) then i.c. NMDA/AMPA-kainate agonist; (3) i.p. VEGF then i.c. NMDA/AMPA-kainate agonist; and (4) in mutants lacking the hypoxia-responsive element (HRE) of the VEGF-A gene (VEGF( partial differential/ partial differential)) and their wild-type littermates (VEGF(+/+)), HxP followed by i.c. NMDA agonist. HxP reduced the size of NMDA-related cortical and AMPA-kainate-related cortical and white matter excitotoxic lesions. Anti-VEGFR2/Flk1 mAb prevented HxP-induced neuroprotection. VEGF produced dose-dependent reduction in cortical lesions. HxP did not prevent, but instead exacerbated, brain lesions in VEGF( partial differential/ partial differential) mutants. Thus, exogenous as well as endogenous VEGF reduces excitotoxic brain lesions in the developing mouse. The VEGF/VEGFR2/Flk1 pathway is involved in the neuroprotective response to HxP.

Details

ISSN :
09699961
Volume :
26
Database :
OpenAIRE
Journal :
Neurobiology of Disease
Accession number :
edsair.doi.dedup.....a1dcb814d2b214b48e35aeba43eaabfd