Back to Search Start Over

A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models

Authors :
Sauveur Belviso
Philippe Peylin
Benjamin Poulter
Thomas Launois
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Modélisation des Surfaces et Interfaces Continentales (MOSAIC)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
ICOS-RAMCES (ICOS-RAMCES)
Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV)
European Project: 338264,EC:FP7:ERC,ERC-2013-StG,SOLCA(2014)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Launois, Thomas
Source :
Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2015, 15 (16), pp.9285-9312. ⟨10.5194/acp-15-9285-2015⟩, Atmospheric Chemistry and Physics, 2015, 15 (16), pp.9285-9312. ⟨10.5194/acp-15-9285-2015⟩, Atmospheric Chemistry and Physics, Vol 15, Iss 16, Pp 9285-9312 (2015), Atmospheric Chemistry and Physics 16 (15), 9285-9312. (2015)
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Clear analogies between carbonyl sulfide (OCS) and carbon dioxide (CO2) diffusion pathways through leaves have been revealed by experimental studies, with plant uptake playing an important role for the atmospheric budget of both species. Here we use atmospheric OCS to evaluate the gross primary production (GPP) of three dynamic global vegetation models (Lund–Potsdam–Jena, LPJ; National Center for Atmospheric Research – Community Land Model 4, NCAR-CLM4; and Organising Carbon and Hydrology In Dynamic Ecosystems, ORCHIDEE). Vegetation uptake of OCS is modeled as a linear function of GPP and leaf relative uptake (LRU), the ratio of OCS to CO2 deposition velocities of plants. New parameterizations for the non-photosynthetic sinks (oxic soils, atmospheric oxidation) and biogenic sources (oceans and anoxic soils) of OCS are also provided. Despite new large oceanic emissions, global OCS budgets created with each vegetation model show exceeding sinks by several hundred Gg S yr−1. An inversion of the surface fluxes (optimization of a global scalar which accounts for flux uncertainties) led to balanced OCS global budgets, as atmospheric measurements suggest, mainly by drastic reduction (up to −50 %) in soil and vegetation uptakes. The amplitude of variations in atmospheric OCS mixing ratios is mainly dictated by the vegetation sink over the Northern Hemisphere. This allows for bias recognition in the GPP representations of the three selected models. The main bias patterns are (i) the terrestrial GPP of ORCHIDEE at high northern latitudes is currently overestimated, (ii) the seasonal variations of the GPP are out of phase in the NCAR-CLM4 model, showing a maximum carbon uptake too early in spring in the northernmost ecosystems, (iii) the overall amplitude of the seasonal variations of GPP in NCAR-CLM4 is too small, and (iv) for the LPJ model, the GPP is slightly out of phase for the northernmost ecosystems and the respiration fluxes might be too large in summer in the Northern Hemisphere. These results rely on the robustness of the OCS modeling framework and, in particular, the choice of the LRU values (assumed constant in time) and the parameterization of soil OCS uptake with small seasonal variations. Refined optimization with regional-scale and seasonally varying coefficients might help to test some of these hypothesis.

Details

Language :
English
ISSN :
16807316 and 16807324
Database :
OpenAIRE
Journal :
Atmospheric Chemistry and Physics, Atmospheric Chemistry and Physics, European Geosciences Union, 2015, 15 (16), pp.9285-9312. ⟨10.5194/acp-15-9285-2015⟩, Atmospheric Chemistry and Physics, 2015, 15 (16), pp.9285-9312. ⟨10.5194/acp-15-9285-2015⟩, Atmospheric Chemistry and Physics, Vol 15, Iss 16, Pp 9285-9312 (2015), Atmospheric Chemistry and Physics 16 (15), 9285-9312. (2015)
Accession number :
edsair.doi.dedup.....a1e0d9bf722afef7225917c0207e99e9
Full Text :
https://doi.org/10.5194/acp-15-9285-2015⟩