Back to Search Start Over

Matrix multiplication over word-size modular rings using approximate formulae

Authors :
Brice Boyer
Jean-Guillaume Dumas
Department of mathematics [North Carolina]
North Carolina State University [Raleigh] (NC State)
University of North Carolina System (UNC)-University of North Carolina System (UNC)
Calculs Algébriques et Systèmes Dynamiques (CASYS)
Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
ANR-11-BS02-0013,HPAC,Calcul Algébrique Haute-Performance(2011)
Source :
ACM Transactions on Mathematical Software, ACM Transactions on Mathematical Software, 2016, 42 (3-20), ⟨10.1145/2829947⟩, ACM Transactions on Mathematical Software, Association for Computing Machinery, 2016, 42 (3-20), ⟨10.1145/2829947⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Bini-Capovani-Lotti-Romani approximate formula (or border rank) for matrix multiplication achieves a better complexity than Strassen’s matrix multiplication formula. In this article, we show a novel way to use the approximate formula in the special case where the ring is Z / p Z . In addition, we show an implementation à la FFLAS--FFPACK, where p is a word-size modulo, that improves on state-of-the-art Z / p Z matrix multiplication implementations.

Details

Language :
English
ISSN :
00983500
Database :
OpenAIRE
Journal :
ACM Transactions on Mathematical Software, ACM Transactions on Mathematical Software, 2016, 42 (3-20), ⟨10.1145/2829947⟩, ACM Transactions on Mathematical Software, Association for Computing Machinery, 2016, 42 (3-20), ⟨10.1145/2829947⟩
Accession number :
edsair.doi.dedup.....a20b1e43de3430317d6d5c9909a20e29
Full Text :
https://doi.org/10.1145/2829947⟩