Back to Search Start Over

Optomechanical mass spectrometry

Authors :
Alexandre Fafin
Christophe Masselon
Marc Sansa
Martial Defoort
Ivan Favero
Ariel Brenac
Sebastien Hentz
Louise Banniard
Guillaume Jourdan
Marc Gely
Maxime Hermouet
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Circuits, Devices and System Integration (CDSI)
Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
SPINtronique et TEchnologie des Composants (SPINTEC)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Laboratoire de Biologie à Grande Échelle (BGE - UMR S1038)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162))
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
S.H. acknowledges support from the European Union through the ERC Enlightened project (616251), I.F. through the ERC Nomli project (N770933) and M.S. through the Marie-Curie Eurotalents incoming fellowship.
European Project: 616251,EC:FP7:ERC,ERC-2013-CoG,ENLIGHTENED(2014)
Circuits, Devices and System Integration (TIMA-CDSI)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Bodescot, Myriam
Nanophotonic Nanomechanical Mass Spectrometry for Biology and Health - ENLIGHTENED - - EC:FP7:ERC2014-06-01 - 2019-05-31 - 616251 - VALID
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-7 (2020), Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), pp.3781. ⟨10.1038/s41467-020-17592-9⟩, Nature Communications, 2020, 11 (1), pp.3781. ⟨10.1038/s41467-020-17592-9⟩
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Nanomechanical mass spectrometry has proven to be well suited for the analysis of high mass species such as viruses. Still, the use of one-dimensional devices such as vibrating beams forces a trade-off between analysis time and mass resolution. Complex readout schemes are also required to simultaneously monitor multiple resonance modes, which degrades resolution. These issues restrict nanomechanical MS to specific species. We demonstrate here single-particle mass spectrometry with nano-optomechanical resonators fabricated with a Very Large Scale Integration process. The unique motion sensitivity of optomechanics allows designs that are impervious to particle position, stiffness or shape, opening the way to the analysis of large aspect ratio biological objects of great significance such as viruses with a tail or fibrils. Compared to top-down beam resonators with electrical read-out and state-of-the-art mass resolution, we show a three-fold improvement in capture area with no resolution degradation, despite the use of a single resonance mode.<br />The use of one dimensional devices in nanomechanical mass spectrometry leads to a trade-off between analysis time and resolution. Here, the authors report single-particle mass spectrometry using integrated optomechanical resonators, impervious to particle position, stiffness or shape.

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....a2159784ec6c6d28a697213a24f1f622
Full Text :
https://doi.org/10.1038/s41467-020-17592-9