Back to Search Start Over

Artificial intelligence outperforms pulmonologists in the interpretation of pulmonary function tests

Authors :
Topalovic, Marko
Das, Nilakash
Burgel, Pierre-Regis
Daenen, Marc
Derom, Eric
Haenebalcke, Christel
Janssen, Rob
Kerstjens, Huib AM
Liistro, Giuseppe
Louis, Renaud
Ninane, Vincent
Pison, Christophe
Schlesser, Marc
Vercauter, Piet
Vogelmeier, Claus F
Wouters, Emiel
Wynants, Jokke
Janssens, Wim
De Pauw, R
Depuydt, C
Haenebalcke, C
Muyldermans, S
Ringoet, V
Stevens, D
Bayat, S
Benet, J
Catho, E
Claustre, J
Fedi, A
Ferjani, MA
Guzun, R
Isnard, M
Nicolas, S
Pierret, T
Pison, C
Rouches, S
Wuyam, B
Corhay, JL
Guiot, J
Ghysen, K
Renaud, L
Sibille, A
De La Barriere, H
Charpentier, C
Corhut, S
Hamdan, KA
Schlesser, M
Wirtz, G
Alabadan, E
Birsen, G
Burgel, PR
Chohra, A
Hamard, C
Lemarie, B
Lothe, MN
Martin, C
Sainte-Marie, AC
Sebane, L
Berk, Y
de Brouwer, B
Janssen, R
Kerkhoff, J
Spaanderman, A
Stegers, M
Termeer, A
van Grimbergen, I
van Veen, A
van Ruitenbeek, L
Vermeer, L
Zaal, R
Zijlker, M
Aumann, J
Cuppens, K
Degraeve, D
Demuynck, K
Dieriks, B
Pat, K
Spaas, L
Van Puijenbroek, R
Weytjens, K
Wynants, J
Adam, V
Berendes, BJ
Hardeman, E
Jordens, P
Munghen, E
Tournoy, K
Vercauter, P
Alame, T
Bruyneel, M
Gabrovska, M
Muylle, I
Ninane, V
Rozen, D
Rummens, P
Van den Broecke, S
Froidure, A
Gohy, S
Liistro, G
Pieters, T
Pilette, C
Pirson, F
Kerstjens, H
Van den Berge, M
Ten Hacken, N
Duiverman, M
Koster, D
Vosse, B
Conemans, L
Maus, M
Bischoff, M
Rutten, M
Agterhuis, D
Sprooten, R
Beutel, B
Jerrentrup, A
Klemmer, A
Viniol, C
Vogelmeier, C
Bode, H
Dooms, C
Gullentops, D
Janssens, W
Nackaerts, K
Rutens, D
Wauters, E
Wuyts, W
Derom, E
Dobbelaere, S
Loof, S
Serry, G
Putman, B
Van Acker, L
Vandeweygaerde, Y
Criel, M
Daenen, M
Gubbelmans, R
Klerkx, S
Michiels, E
Thomeer, M
Vanhauwaert, A
UCL - (SLuc) Service de pneumologie
Groningen Research Institute for Asthma and COPD (GRIAC)
Lifestyle Medicine (LM)
Hôpital Cochin [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Centre Hospitalier Universitaire [Grenoble] (CHU)
Laboratory of Fundamental and Applied Bioenergetics = Laboratoire de bioénergétique fondamentale et appliquée (LBFA)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
RS: NUTRIM - R3 - Respiratory & Age-related Health
MUMC+: MA Longziekten (3)
Pulmonologie
MUMC+: MA Med Staf Spec Longziekten (9)
MUMC+: MA Med Staf Artsass Longziekten (9)
Source :
The European Respiratory Journal, Vol. 11, no.53, p. 4 (2019), European Respiratory Journal, 53(4):1801660. EUROPEAN RESPIRATORY SOC JOURNALS LTD, European Respiratory Journal, European Respiratory Journal, European Respiratory Society, 2019, 53 (4), pp.1801660. ⟨10.1183/13993003.01660-2018⟩, European Respiratory Journal, 53(4):1801660. European Respiratory Society
Publication Year :
2018

Abstract

The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert opinion that relies on the recognition of patterns and the clinical context for detection of specific diseases. In this study, we aimed to explore the accuracy and interrater variability of pulmonologists when interpreting PFTs compared with artificial intelligence (AI)-based software that was developed and validated in more than 1500 historical patient cases.120 pulmonologists from 16 European hospitals evaluated 50 cases with PFT and clinical information, resulting in 6000 independent interpretations. The AI software examined the same data. American Thoracic Society/European Respiratory Society guidelines were used as the gold standard for PFT pattern interpretation. The gold standard for diagnosis was derived from clinical history, PFT and all additional tests.The pattern recognition of PFTs by pulmonologists (senior 73%, junior 27%) matched the guidelines in 74.4±5.9% of the cases (range 56-88%). The interrater variability of κ=0.67 pointed to a common agreement. Pulmonologists made correct diagnoses in 44.6±8.7% of the cases (range 24-62%) with a large interrater variability (κ=0.35). The AI-based software perfectly matched the PFT pattern interpretations (100%) and assigned a correct diagnosis in 82% of all cases (p

Details

ISSN :
13993003 and 09031936
Volume :
53
Issue :
4
Database :
OpenAIRE
Journal :
The European respiratory journal
Accession number :
edsair.doi.dedup.....a21ff77d01be0510d50b78354f11f66e
Full Text :
https://doi.org/10.1183/13993003.01660-2018⟩