Back to Search Start Over

Unsupervised Algorithms for Microarray Sample Stratification

Authors :
Michele Fratello
Luca Cattelani
Antonio Federico
Alisa Pavel
Giovanni Scala
Angela Serra
Dario Greco
Agapito, Giuseppe
Institute of Biotechnology
Fratello, M.
Cattelani, L.
Federico, A.
Pavel, A.
Scala, G.
Serra, A.
Greco, D.
Source :
Methods in Molecular Biology ISBN: 9781071618387
Publication Year :
2022
Publisher :
Springer, UK, 2022.

Abstract

The amount of data made available by microarrays gives researchers the opportunity to delve into the complexity of biological systems. However, the noisy and extremely high-dimensional nature of this kind of data poses significant challenges. Microarrays allow for the parallel measurement of thousands of molecular objects spanning different layers of interactions. In order to be able to discover hidden patterns, the most disparate analytical techniques have been proposed. Here, we describe the basic methodologies to approach the analysis of microarray datasets that focus on the task of (sub)group discovery.

Details

Language :
English
ISBN :
978-1-07-161838-7
ISBNs :
9781071618387
Database :
OpenAIRE
Journal :
Methods in Molecular Biology ISBN: 9781071618387
Accession number :
edsair.doi.dedup.....a2529505e72cfbdacbea0c155984172e