Back to Search
Start Over
Physicochemical properties of kinetoplast DNA from Crithidia acanthocephali. Crithidia luciliae, and Trypanosoma lewisi
- Source :
- The Journal of Cell Biology
- Publication Year :
- 1975
- Publisher :
- Rockefeller University Press, 1975.
-
Abstract
- The protozoa Crithidia and Trypanosoma contain within a mitochondrion a mass of DNA known as kinetoplast DNA (kDNA) which consists mainly of an association of thousands of small circular molecules of similar size held together by topological interlocking. Using kDNA from Crithidia acanthocephali, Crithidia luciliae, and Trypanosoma lewisi, physicochemical studies have been carried out with intact associations and with fractions of covalently closed single circular molecules, and of open single circular and unit length linear molecules obtained from kDNA associations by sonication, sucrose sedimentation, and cesium chloride-ethidium bromide equilibrium centrifugation. Buoyant density analyses failed to provide evidence for base composition heterogeneity among kDNA molecules within a species. The complementary nucleotide strands of kDNA molecules of all three species had distinct buoyant densities in both alkaline and neutral cesium chloride. For C. acanthocephali kDNA, these buoyant density differences were shown to be a reflection of differences in base composition between the complementary nucleotide strands. The molar ratios of adenine: thymine:guanine:cytosine, obtained from deoxyribonucleotide analyses were 16.8:41.0:28.1:14.1 for the heavy strand and 41.6:16.6:12.8:29.0 for the light strand. Covalently closed single circular molecules of C. acanthocephali (as well as intact kDNA associations of C. acanthocephali and T. lewisi) formed a single band in alkaline cesium chloride gradients, indicating their component nucleotide strands to be alkaline insensitive. Data from buoyant density, base composition, and thermal melting analyses suggested that minor bases are either rare or absent in Crithidia kDNA. The kinetics of renaturation of 32P labeled C. acanthocephali kDNA measured using hydroxyapatite chromatography were consistent with at least 70% of the circular molecules of this DNA having the same nucleotide sequence. Evidence for sequence homologies among the kDNAs of all three species was obtained from buoyant density analyses of DNA in annealed mixtures containing one component kDNA strand from each of two species.
- Subjects :
- Guanine
Trypanosoma lewisi
Alkalies
Nucleic Acid Denaturation
Cytosine
chemistry.chemical_compound
Nucleic acid thermodynamics
Heavy strand
parasitic diseases
Crithidia
Journal Article
Animals
Crithidia luciliae
Base Sequence
biology
Adenine
Nucleic acid sequence
Eukaryota
Nucleic Acid Hybridization
DNA
Cell Biology
biology.organism_classification
chemistry
Biochemistry
Kinetoplast
Nucleic Acid Renaturation
Nucleic Acid Conformation
DNA, Circular
Thymine
Subjects
Details
- ISSN :
- 15408140 and 00219525
- Volume :
- 67
- Database :
- OpenAIRE
- Journal :
- Journal of Cell Biology
- Accession number :
- edsair.doi.dedup.....a2a07377cb9c0f6d2e785709a57d9312
- Full Text :
- https://doi.org/10.1083/jcb.67.2.378