Back to Search Start Over

The ring star problem: polyhedral analysis and exact algorithm

Authors :
Gilbert Laporte
Martine Labbé
Inmaculada Rodríguez Martín
Juan-José Salazar-González
Graphes et Optimisation Mathématique [Bruxelles] (GOM)
Université libre de Bruxelles (ULB)
Laboratoire CIRRELT Université Laval Quebec (CIRRELT)
Université Laval [Québec] (ULaval)
Fortz, Bernard
Source :
Networks, Networks, Wiley, 2004, 43, pp.177-189
Publication Year :
2004
Publisher :
HAL CCSD, 2004.

Abstract

In the Ring Star Problem, the aim is to locate a simple cycle through a subset of vertices of a graph with the objective of minimizing the sum of two costs: a ring cost proportional to the length of the cycle and an assignment cost from the vertices not in the cycle to their closest vertex on the cycle. The problem has several applications in telecommunications network design and in rapid transit systems planning. It is an extension of the classical location–allocation problem introduced in the early 1960s, and closely related versions have been recently studied by several authors. This article formulates the problem as a mixed-integer linear program and strengthens it with the introduction of several families of valid inequalities. These inequalities are shown to be facet-defining and are used to develop a branch-and-cut algorithm. Computational results show that instances involving up to 300 vertices can be solved optimally using the proposed methodology. © 2004 Wiley Periodicals, Inc.

Details

Language :
English
ISSN :
00283045 and 10970037
Database :
OpenAIRE
Journal :
Networks, Networks, Wiley, 2004, 43, pp.177-189
Accession number :
edsair.doi.dedup.....a3150837f3ed323b131d8d5bec6ec298