Back to Search Start Over

On the suitability of Data Selection for Cross-building Knowledge Transfer

Authors :
Christian Obrecht
Mouna Labiadh
Catarina Ferreira da Silva
Parisa Ghodous
Service Oriented Computing (SOC)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Université Claude Bernard Lyon 1 - Faculté des sciences et technologies (UCBL FST)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Centre d'Energétique et de Thermique de Lyon (CETHIL)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon
Source :
The 17th International Conference on High Performance Computing & Simulation (HPCS 2019), The 3rd Special Session on High Performance Services Computing and Internet Technologies (SerCo 2019), The 17th International Conference on High Performance Computing & Simulation (HPCS 2019), The 3rd Special Session on High Performance Services Computing and Internet Technologies (SerCo 2019), Jul 2019, Dublin, Ireland. pp.7, HPCS
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Supervised deep learning has achieved remarkable success in various applications. Such advances were mainly attributed to the rise of computational powers and the amounts of training data made available. Therefore, accurate large-scale data collection services are often needed. Once representative data is retrieved, it becomes possible to train the supervised machine learning predictor. However, a model trained on existing data, that generally comes from multiple datasets, might generalize poorly on the unseen target data. This problem is referred to as domain shift. In this paper, we explore the suitability of data selection to tackle the domain shift challenge in the context of domain generalization. We perform our experimental study on the use case of building energy consumption prediction. Experimental results suggest that minimal building description is capable of improving cross-building generalization performances when used to select data.

Details

Language :
English
Database :
OpenAIRE
Journal :
The 17th International Conference on High Performance Computing & Simulation (HPCS 2019), The 3rd Special Session on High Performance Services Computing and Internet Technologies (SerCo 2019), The 17th International Conference on High Performance Computing & Simulation (HPCS 2019), The 3rd Special Session on High Performance Services Computing and Internet Technologies (SerCo 2019), Jul 2019, Dublin, Ireland. pp.7, HPCS
Accession number :
edsair.doi.dedup.....a36d82d20e5dba78b7823643dcb7a921