Back to Search Start Over

SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation

Authors :
Michele, Bjoern
Boulch, Alexandre
Puy, Gilles
Vu, Tuan-Hung
Marlet, Renaud
Courty, Nicolas
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

Learning models on one labeled dataset that generalize well on another domain is a difficult task, as several shifts might happen between the data domains. This is notably the case for lidar data, for which models can exhibit large performance discrepancies due for instance to different lidar patterns or changes in acquisition conditions. This paper addresses the corresponding Unsupervised Domain Adaptation (UDA) task for semantic segmentation. To mitigate this problem, we introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data. As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data. This novel strategy differs from classical minimization of statistical divergences or lidar-specific state-of-the-art domain adaptation techniques. Our experiments demonstrate that our method achieves a better performance than the current state of the art in synthetic-to-real and real-to-real scenarios.<br />Comment: Project repository: github.com/valeoai/SALUDA

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....a3f2a0ac6cabfe70e263bde288105a59
Full Text :
https://doi.org/10.48550/arxiv.2304.03251