Back to Search Start Over

Human tauopathy-derived tau strains determine the substrates recruited for templated amplification

Authors :
Takashi Nonaka
Airi Tarutani
Yuko Saito
David M. A. Mann
Mari Yoshida
Haruka Miyata
Shigeo Murayama
Taisuke Tomita
Kazuko Hasegawa
Masato Hasegawa
Andrew C Robinson
Source :
Brain, Tarutani, A, Miyata, H, Nonaka, T, Hasegawa, K, Yoshida, M, Saito, Y, Murayama, S, Robinson, A, Mann, D, Tomita, T & Hasegawa, M 2021, ' Human tauopathy-derived tau strains determine the substrates recruited for templated amplification ', Brain : a journal of neurology . https://doi.org/10.1093/brain/awab091, https://doi.org/10.1093/brain/awab091
Publication Year :
2021
Publisher :
Oxford University Press, 2021.

Abstract

Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Specifically, three-repeat tau and four-repeat tau in Alzheimer’s disease, three-repeat tau in Pick’s disease (PiD) and four-repeat tau in progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) form amyloid-like fibrous structures that accumulate in neurons and/or glial cells. Amplification and cell-to-cell transmission of abnormal tau based on the prion hypothesis are believed to explain the onset and progression of tauopathies. Recent studies support not only the self-propagation of abnormal tau, but also the presence of conformationally distinct tau aggregates, namely tau strains. Cryogenic electron microscopy analyses of patient-derived tau filaments have revealed disease-specific ordered tau structures. However, it remains unclear whether the ultrastructural and biochemical properties of tau strains are inherited during the amplification of abnormal tau in the brain. In this study, we investigated template-dependent amplification of tau aggregates using a cellular model of seeded aggregation. Tau strains extracted from human tauopathies caused strain-dependent accumulation of insoluble filamentous tau in SH-SY5Y cells. The seeding activity towards full-length four-repeat tau substrate was highest in CBD-tau seeds, followed by PSP-tau and Alzheimer’s disease (AD)-tau seeds, while AD-tau seeds showed higher seeding activity than PiD-tau seeds towards three-repeat tau substrate. Abnormal tau amplified in cells inherited the ultrastructural and biochemical properties of the original seeds. These results strongly suggest that the structural differences of patient-derived tau strains underlie the diversity of tauopathies, and that seeded aggregation and filament formation mimicking the pathogenesis of sporadic tauopathy can be reproduced in cultured cells. Our results indicate that the disease-specific conformation of tau aggregates determines the tau isoform substrate that is recruited for templated amplification, and also influences the prion-like seeding activity.<br />Tarutani et al. show that pathogenic tau seeds extracted from the brains of patients with tauopathies induce disease-specific seeded tau aggregation and filament formation in cultured cells. The results indicate that template-dependent tau aggregation is key to the development of various types of tauopathy.

Details

Language :
English
ISSN :
14602156 and 00068950
Volume :
144
Issue :
8
Database :
OpenAIRE
Journal :
Brain
Accession number :
edsair.doi.dedup.....a434c74a3b244fd2fc8fb9b543b067cf
Full Text :
https://doi.org/10.1093/brain/awab091