Back to Search Start Over

Rhodopsin in the Dark Hot Sea: Molecular Analysis of Rhodopsin in a Snailfish, Careproctus rhodomelas, Living near the Deep-Sea Hydrothermal Vent

Authors :
Tetsuya Miwa
Hiroyuki Yamamoto
Hiromasa Mitsui
Ryo Kabutomori
Keiko Okano
Akihiro Takemura
Rie Sakata
Toshiyuki Okano
Source :
PLoS ONE, Vol 10, Iss 8, p e0135888 (2015), PLoS ONE
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Visual systems in deep-sea fishes have been previously studied from a photobiological aspect; however, those of deep-sea fish inhabiting the hydrothermal vents are far less understood due to sampling difficulties. In this study, we analyzed the visual pigment of a deep-sea snailfish, Careproctus rhodomelas, discovered and collected only near the hydrothermal vents of oceans around Japan. Proteins were solubilized from the C. rhodomelas eyeball and subjected to spectroscopic analysis, which revealed the presence of a pigment characterized by an absorption maximum (λmax) at 480 nm. Immunoblot analysis of the ocular protein showed a rhodopsin-like immunoreactivity. We also isolated a retinal cDNA encoding the entire coding sequence of putative C. rhodomelas rhodopsin (CrRh). HEK293EBNA cells were transfected with the CrRh cDNA and the proteins extracted from the cells were subjected to spectroscopic analysis. The recombinant CrRh showed the absorption maximum at 480 nm in the presence of 11-cis retinal. Comparison of the results from the eyeball extract and the recombinant CrRh strongly suggests that CrRh has an A1-based 11-cis-retinal chromophore and works as a photoreceptor in the C. rhodomelas retina, and hence that C. rhodomelas responds to dim blue light much the same as other deep-sea fishes. Because hydrothermal vent is a huge supply of viable food, C. rhodomelas likely do not need to participate diel vertical migration and may recognize the bioluminescence produced by aquatic animals living near the hydrothermal vents.

Details

ISSN :
19326203
Volume :
10
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....a43a7a9787e8909951fa42d918c7356e
Full Text :
https://doi.org/10.1371/journal.pone.0135888