Back to Search
Start Over
Investigations on sediment toxicity of German rivers applying a standardized bioassay battery
- Source :
- Environmental Science and Pollution Research. 22:16358-16370
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- River sediments may contain a huge variety of environmental contaminants and play a key role in the ecological status of aquatic ecosystems. Contaminants adsorbed to sediments and suspended solids may contribute directly or after remobilization to an adverse ecological and chemical status of surface water. In this subproject of the joint research project DanTox, acetonic Soxhlet extracts from three German river sediments from the River Rhine (Altrip and Ehrenbreitstein with moderate contamination) and River Elbe (Veringkanal Hamburg heavily contaminated) were prepared and redissolved in dimethyl sulfoxide (DMSO). These extracts were analyzed with a standard bioassay battery with organisms from different trophic levels (bacteria, algae, Daphnia, fish) as well as in the Ames test and the umuC test for bacterial mutagenicity and genotoxicity according to the respective OECD and ISO guidelines. In total, 0.01% (standard) up to 0.25% (only fish embryo test) of the DMSO sediment extract was dosed to the test systems resulting in maximum sediment equivalent concentrations (SEQ) of 2 up to 50 g l(-1). The sediment of Veringkanal near Hamburg harbor was significantly more toxic in most tests compared to the sediment extracts from Altrip and Ehrenbreitstein from the River Rhine. The most toxic effect found for Veringkanal was in the algae test with an ErC50 (72 h) of 0.00226 g l(-1) SEQ. Ehrenbreitstein and Altrip samples were about factor 1,000 less toxic. In the Daphnia, Lemna, and acute fish toxicity tests, no toxicity at all was found at 2 g l(-1) SEQ. corresponding to 0.01% DMSO. Only when increasing the DMSO concentration the fish embryo test showed a 22-fold higher toxicity for Veringkanal than for Ehrenbreitstein and Altrip samples, while the toxicity difference was less evident for the Daphnia test due to the overlaying solvent toxicity above 0.05% dimethyl sulfoxide (DMSO). The higher toxicities observed with the Veringkanal sample are supported by the PAH and PCB concentrations analyzed in the sediments. The sediment extracts of Altrip and Veringkanal were mutagenic in the Ames tester strain TA98 with metabolic activation (S9-mix). The findings allow a better ecotoxicological characterization of the sediments extensively analyzed in all subprojects of the DanTox project (e.g., Garcia-Kaeufer et al. Environ Sci Pollut Res. doi: 10.1007/s11356-014-3894-4 , 2014; Schiwy et al. Environ Sci Pollut Res. doi: 10.1007/s11356-014-3185-0 , 2014; Hollert and Keiter 2015). In the absence of agreed limit values for sediment extracts in standard tests, further data with unpolluted reference sediments are required for a quantitative risk assessment of the investigated polluted sediments.
- Subjects :
- Salmonella typhimurium
Geologic Sediments
Health, Toxicology and Mutagenesis
Ecotoxicology
medicine.disease_cause
Risk Assessment
Daphnia
Ames test
Lethal Dose 50
Rivers
Chlorophyta
Toxicity Tests, Acute
medicine
Animals
Environmental Chemistry
Bioassay
Zebrafish
Microbial Viability
Lemna
biology
Chemistry
Sediment
General Medicine
Reference Standards
biology.organism_classification
Aliivibrio fischeri
Pollution
Environmental chemistry
Toxicity
Water Pollutants, Chemical
Genotoxicity
Subjects
Details
- ISSN :
- 16147499 and 09441344
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Environmental Science and Pollution Research
- Accession number :
- edsair.doi.dedup.....a4832b520d492c9557d6c2691586d9dd