Back to Search
Start Over
Analysis of an epidemic model with awareness decay on regular random networks
- Source :
- Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, © Journal of Theoretical Biology, 2015, vol. 365, p. 457-468, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona
- Publication Year :
- 2021
-
Abstract
- The existence of a die-out threshold (different from the classic disease-invasion one) defining a region of slow extinction of an epidemic has been proved elsewhere for susceptible-aware-infectious-susceptible models without awareness decay, through bifurcation analysis. By means of an equivalent mean-field model defined on regular random networks, we interpret the dynamics of the system in this region and prove that the existence of bifurcation for this second epidemic threshold crucially depends on the absence of awareness decay. We show that the continuum of equilibria that characterizes the slow die-out dynamics collapses into a unique equilibrium when a constant rate of awareness decay is assumed, no matter how small, and that the resulting bifurcation from the disease-free equilibrium is equivalent to that of standard epidemic models. We illustrate these findings with continuous-time stochastic simulations on regular random networks with different degrees. Finally, the behaviour of solutions with and without decay in awareness is compared around the second epidemic threshold for a small rate of awareness decay This work has been partially supported by the Research Grant MTM2011-27739-C04-03 of the Spanish Government (D.J. and J.S.), the Project 2009-SGR-345 (J.S.) of the Generalitat de Catalunya, and IMA Collaborative Grant (SGS01/13), UK (I.K. and J.S.)
- Subjects :
- Statistics and Probability
Health Knowledge, Attitudes, Practice
Time Factors
Epidemics -- Mathematical models
FOS: Physical sciences
Dynamical Systems (math.DS)
Communicable Diseases
Models, Biological
Quantitative Biology - Quantitative Methods
General Biochemistry, Genetics and Molecular Biology
Epidemic thresholds
Stochastic processes
Network epidemic models
Epidèmies -- Models matemàtics
FOS: Mathematics
Humans
Statistical physics
Mathematics - Dynamical Systems
Epidemics
Quantitative Biology - Populations and Evolution
Quantitative Methods (q-bio.QM)
Bifurcation
Mathematics
General Immunology and Microbiology
Continuum (measurement)
Stochastic process
Processos de ramificació
Applied Mathematics
Preventive behavioural responses
Populations and Evolution (q-bio.PE)
Processos estocàstics
General Medicine
Nonlinear Sciences - Adaptation and Self-Organizing Systems
Constant rate
Branching processes
Bifurcation analysis
FOS: Biological sciences
Modeling and Simulation
Disease Susceptibility
General Agricultural and Biological Sciences
Epidemic model
Adaptation and Self-Organizing Systems (nlin.AO)
Mathematical economics
Subjects
Details
- ISSN :
- 00225193
- Database :
- OpenAIRE
- Journal :
- Recercat: Dipósit de la Recerca de Catalunya, Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, © Journal of Theoretical Biology, 2015, vol. 365, p. 457-468, Articles publicats (D-IMA), DUGiDocs – Universitat de Girona
- Accession number :
- edsair.doi.dedup.....a484f165882f3190b42355fa2d5accca