Back to Search Start Over

On the continuity of solutions of quasilinear parabolic equations with generalized Orlicz growth under non-logarithmic conditions

Authors :
Mykhailo V. Voitovych
Igor I. Skrypnik
Source :
Annali di Matematica Pura ed Applicata (1923 -). 201:1381-1416
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

We prove the continuity of bounded solutions for a wide class of parabolic equations with $(p,q)$-growth $$ u_{t}-{\rm div}\left(g(x,t,|\nabla u|)\,\frac{\nabla u}{|\nabla u|}\right)=0, $$ under the generalized non-logarithmic Zhikov's condition $$ g(x,t,{\rm v}/r)\leqslant c(K)\,g(y,\tau,{\rm v}/r), \quad (x,t), (y,\tau)\in Q_{r,r}(x_{0},t_{0}), \quad 0<br />Comment: 32 pages

Details

ISSN :
16181891 and 03733114
Volume :
201
Database :
OpenAIRE
Journal :
Annali di Matematica Pura ed Applicata (1923 -)
Accession number :
edsair.doi.dedup.....a4a824f86de0eb634c0a8b125b3c5b22
Full Text :
https://doi.org/10.1007/s10231-021-01161-y