Back to Search Start Over

Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells

Authors :
Zhuo Xian Meng
Hui Li
Hong Wei
Qian Jiang
Ying Pan
Pingping Li
Benhua Zeng
Xiaojiao Zheng
Jiaxu Zhao
Qin Zhang
Zhihua Liu
Haifang Wang
Xueying Shen
Zhengjun Chen
Source :
Cell Res, Cell Research
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Long-range communication between intestinal symbiotic bacteria and extra-intestinal organs can occur through circulating bacterial signal molecules, through neural circuits, or through cytokines or hormones from host cells. Here we report that Nod1 ligands derived from intestinal bacteria act as signal molecules and directly modulate insulin trafficking in pancreatic beta cells. The cytosolic peptidoglycan receptor Nod1 and its downstream adapter Rip2 are required for insulin trafficking in beta cells in a cell-autonomous manner. Mechanistically, upon recognizing cognate ligands, Nod1 and Rip2 localize to insulin vesicles, recruiting Rab1a to direct insulin trafficking through the cytoplasm. Importantly, intestinal lysozyme liberates Nod1 ligands into the circulation, thus enabling long-range communication between intestinal microbes and islets. The intestine-islet crosstalk bridged by Nod1 ligands modulates host glucose tolerance. Our study defines a new type of inter-organ communication based on circulating bacterial signal molecules, which has broad implications for understanding the mutualistic relationship between microbes and host.

Details

ISSN :
17487838 and 10010602
Volume :
29
Database :
OpenAIRE
Journal :
Cell Research
Accession number :
edsair.doi.dedup.....a4c777073c80dca17e3b882b721b712a
Full Text :
https://doi.org/10.1038/s41422-019-0190-3