Back to Search
Start Over
Completeness of the Bethe Ansatz for an open $q$-boson system with integrable boundary interactions
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2016
- Publisher :
- arXiv, 2016.
-
Abstract
- We employ a discrete integral-reflection representation of the double affine Hecke algebra of type $C^\vee C$ at the critical level q=1, to endow the open finite $q$-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald's three-parameter hyperoctahedral Hall-Littlewood polynomials.<br />Comment: 31 pages, LaTeX
- Subjects :
- Double affine Hecke algebra
Nuclear and High Energy Physics
INTEGRABLE BOUNDARY INTERACTIONS
Integrable system
Matemáticas
HYPEROCTAHEDRAL HALL-LITTLEWOOD POLYNOMIAL
82B23, 33D52, 81R12, 81R50, 81T25
FOS: Physical sciences
01 natural sciences
BETHE ANSATZ
Bethe ansatz
Matemática Pura
purl.org/becyt/ford/1 [https]
DOUBLE AFFINE HECKE ALGEBRA
Lattice (order)
0103 physical sciences
FOS: Mathematics
0101 mathematics
Representation Theory (math.RT)
010306 general physics
Mathematics::Representation Theory
Quantum
Mathematical Physics
Mathematical physics
Boson
Physics
Nonlinear Sciences - Exactly Solvable and Integrable Systems
010102 general mathematics
purl.org/becyt/ford/1.1 [https]
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Eigenfunction
Critical level
Q-BOSONS
Exactly Solvable and Integrable Systems (nlin.SI)
Mathematics - Representation Theory
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....a4d36a766a201961496e3098f01db929
- Full Text :
- https://doi.org/10.48550/arxiv.1611.05922