Back to Search
Start Over
Low-Memory Krylov Subspace Methods for Optimal Rational Matrix Function Approximation
- Source :
- SIAM Journal on Matrix Analysis and Applications. 44:670-692
- Publication Year :
- 2023
- Publisher :
- Society for Industrial & Applied Mathematics (SIAM), 2023.
-
Abstract
- We describe a Lanczos-based algorithm for approximating the product of a rational matrix function with a vector. This algorithm, which we call the Lanczos method for optimal rational matrix function approximation (Lanczos-OR), returns the optimal approximation from a given Krylov subspace in a norm depending on the rational function's denominator, and can be computed using the information from a slightly larger Krylov subspace. We also provide a low-memory implementation which only requires storing a number of vectors proportional to the denominator degree of the rational function. Finally, we show that Lanczos-OR can be used to derive algorithms for computing other matrix functions, including the matrix sign function and quadrature based rational function approximations. In many cases, it improves on the approximation quality of prior approaches, including the standard Lanczos method, with little additional computational overhead.
- Subjects :
- ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
MathematicsofComputing_NUMERICALANALYSIS
Computer Science::Mathematical Software
Numerical Analysis (math.NA)
Mathematics - Numerical Analysis
Computer Science::Numerical Analysis
Analysis
Mathematics::Numerical Analysis
Subjects
Details
- ISSN :
- 10957162 and 08954798
- Volume :
- 44
- Database :
- OpenAIRE
- Journal :
- SIAM Journal on Matrix Analysis and Applications
- Accession number :
- edsair.doi.dedup.....a4deab72fe0836686d0eee5f3106d4f2