Back to Search Start Over

Target Detection of Hyperspectral Image Based on Faster R-CNN with Data Set Adjustment and Parameter Turning

Authors :
Hao Wang
Qiaoqiao Sun
Xuefeng Liu
Yuping Feng
Min Fu
Salah Bourennane
Li Ma
Congcong Wang
GSM (GSM)
Institut FRESNEL (FRESNEL)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Bourennane, Salah
Source :
Oceans, Oceans, 2019, Marseille, France
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Deep learning target detection based on faster regions with convolutional neural network (Faster R-CNN) features has been applied in image processing successfully, however, it is rarely introduced to the field of hyperspectral image (HSI) target detection due to the tensor characteristics and the lack of training samples of HSI data. In this paper, the target detection based on Faster R-CNN is proposed to HSI with data set adjustment and parameter turning. As a typical tensor data, HSIs contain two-dimensional (2-D) spatial information and one dimensional (1-D) spectral information. It contains more information than ordinary images, and has unique advantages in the field of ground object and sea target detection. Therefore, the original HSI is firstly adjusted to the data set format required by the model, and the final Faster R-CNN sample data set can be achieved by combining the data set of Google Earth images. Next, a Faster R-CNN network suitable for HSI data could be built. Finally, to improve the accuracy of target detection, some parameters of Faster R-CNN would be tuned. The numerical results show that the method has the potential advantages of high precision and high speed in HSI target detection, and will have broad application prospects.

Details

Database :
OpenAIRE
Journal :
OCEANS 2019 - Marseille
Accession number :
edsair.doi.dedup.....a51f748bfaa6311d62826334af315794
Full Text :
https://doi.org/10.1109/oceanse.2019.8867428