Back to Search Start Over

Fluorescence and physico-chemical properties of hydrogenated detonation nanodiamonds

Authors :
Anton Tadich
Alastair Stacey
Billy J. Murdoch
Giannis Thalassinos
Jean-Charles Arnault
Philipp Reineck
Lars Thomsen
Nikolai Dontschuk
Brant C. Gibson
Vadym Mochalin
Hugues A. Girard
Edwin L. H. Mayes
Ibrahim Munkaila Abdullahi
Royal Melbourne Institute of Technology University (RMIT University)
Swinburne University of Technology [Melbourne]
Laboratoire Capteurs Diamant (LCD-LIST)
Département Métrologie Instrumentation & Information (DM2I)
Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Missouri University of Science and Technology (Missouri S&T)
University of Missouri System
Australian Synchrotron [Clayton]
This work was supported by the Australian Research Council (ARC) through the Centre of Excellence for Nanoscale BioPhotonics (CE140100003) and Linkage Infrastructure, Equipment and Facilities grant (LE140100131). G.T. acknowledges funding through the RMIT PhD Scholarship. P.R. acknowledges funding through the RMIT Vice-Chancellor’s Research Fellowship.
Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST)
Source :
Journal of Carbon Research, Journal of Carbon Research, 2020, 6 (1), pp.7. ⟨10.3390/c6010007⟩, C — Journal of Carbon Research, Volume 6, Issue 1, Journal of Carbon Research, MDPI, 2020, 6 (1), pp.7. ⟨10.3390/c6010007⟩, C, Vol 6, Iss 1, p 7 (2020)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Hydrogenated detonation nanodiamonds are of great interest for emerging applications in areas from biology and medicine to lubrication. Here, we compare the two main hydrogenation techniques&mdash<br />annealing in hydrogen and plasma-assisted hydrogenation&mdash<br />for the creation of detonation nanodiamonds with a hydrogen terminated surface from the same starting material. Synchrotron-based soft X-ray spectroscopy, infrared absorption spectroscopy, and electron energy loss spectroscopy were employed to quantify diamond and non-diamond carbon contents and determine the surface chemistries of all samples. Dynamic light scattering was used to study the particles&rsquo<br />colloidal properties in water. For the first time, steady-state and time-resolved fluorescence spectroscopy analysis at temperatures from room temperature down to 10 K was performed to investigate the particles&rsquo<br />fluorescence properties. Our results show that both hydrogenation techniques produce hydrogenated detonation nanodiamonds with overall similar physico-chemical and fluorescence properties.

Details

Language :
English
ISSN :
23115629
Database :
OpenAIRE
Journal :
Journal of Carbon Research, Journal of Carbon Research, 2020, 6 (1), pp.7. ⟨10.3390/c6010007⟩, C — Journal of Carbon Research, Volume 6, Issue 1, Journal of Carbon Research, MDPI, 2020, 6 (1), pp.7. ⟨10.3390/c6010007⟩, C, Vol 6, Iss 1, p 7 (2020)
Accession number :
edsair.doi.dedup.....a549fdc7ddad0181cc02da684f1ca5b3