Back to Search Start Over

A method to detect triplet exciton transfer from singlet fission materials into silicon solar cells: Comparing different surface treatments

Authors :
Jumin Lee
Sidharam P. Pujari
Benjamin Daiber
Stefan W. Tabernig
Steven Verboom
Stefan L. Luxembourg
Moritz H. Futscher
Han Zuilhof
Bruno Ehrler
Source :
Journal of Chemical Physics 152 (2020) 11, Journal of Chemical Physics, 152(11)
Publication Year :
2020
Publisher :
AIP Publishing, 2020.

Abstract

Singlet fission is one of the most promising routes to overcome the single-junction efficiency limit for solar cells. Singlet fission-enhanced silicon solar cells are the most desirable implementation, but transfer of triplet excitons, the product of singlet fission, into silicon solar cells has proved to be very challenging. Here, we report on an all optical measurement technique for the detection of triplet exciton quenching at semiconductor interfaces, a necessary requirement for triplet exciton or charge transfer. The method relies on the growth of individual, single-crystal islands of the singlet fission material on the silicon surface. The islands have different heights, and we correlate these heights to the quenching efficiency of triplet excitons. The quenching efficiency is measured by spatially resolved delayed fluorescence and compared to a diffusion-quenching model. Using silicon capped with a blocking thermal oxide and aromatic monolayers, we demonstrate that this technique can quickly screen different silicon surface treatments for triplet exciton quenching.

Details

ISSN :
10897690 and 00219606
Volume :
152
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi.dedup.....a5548147a951e48cdb37e557c08448a9
Full Text :
https://doi.org/10.1063/1.5139486