Back to Search Start Over

Computing Puiseux series: a fast divide and conquer algorithm

Authors :
Adrien Poteaux
Martin Weimann
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire de Mathématiques Nicolas Oresme (LMNO)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI)
Université de la Polynésie Française (UPF)
Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Source :
Annales Henri Lebesgue, Annales Henri Lebesgue, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩, Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular parts of all Puiseux series of $F$ above $X = 0$ in less than $\tilde{\mathcal{O}}(D\delta)$ operations in $\mathbb{K}$, where $\delta$ is the valuation of the resultant of $F$ and its partial derivative with respect to $Y$. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of $F$ in $\mathbb{K}[[X]][Y ]$ up to an arbitrary precision $X^N$ with $\tilde{\mathcal{O}}(D(\delta + N ))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by $F$ with $\tilde{\mathcal{O}}(D^3)$ arithmetic operations and, if $\mathbb{K} = \mathbb{Q}$, with $\tilde{\mathcal{O}}((h+1)D^3)$ bit operations using a probabilistic algorithm, where $h$ is the logarithmic heigth of $F$.<br />Comment: 27 pages, 2 figures

Details

Language :
English
ISSN :
26449463
Database :
OpenAIRE
Journal :
Annales Henri Lebesgue, Annales Henri Lebesgue, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩, Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩
Accession number :
edsair.doi.dedup.....a58af97bd5d232de3a0b7886af9860c5
Full Text :
https://doi.org/10.5802/ahl.97⟩