Back to Search
Start Over
Computing Puiseux series: a fast divide and conquer algorithm
- Source :
- Annales Henri Lebesgue, Annales Henri Lebesgue, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩, Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- Let $F\in \mathbb{K}[X, Y ]$ be a polynomial of total degree $D$ defined over a perfect field $\mathbb{K}$ of characteristic zero or greater than $D$. Assuming $F$ separable with respect to $Y$ , we provide an algorithm that computes the singular parts of all Puiseux series of $F$ above $X = 0$ in less than $\tilde{\mathcal{O}}(D\delta)$ operations in $\mathbb{K}$, where $\delta$ is the valuation of the resultant of $F$ and its partial derivative with respect to $Y$. To this aim, we use a divide and conquer strategy and replace univariate factorization by dynamic evaluation. As a first main corollary, we compute the irreducible factors of $F$ in $\mathbb{K}[[X]][Y ]$ up to an arbitrary precision $X^N$ with $\tilde{\mathcal{O}}(D(\delta + N ))$ arithmetic operations. As a second main corollary, we compute the genus of the plane curve defined by $F$ with $\tilde{\mathcal{O}}(D^3)$ arithmetic operations and, if $\mathbb{K} = \mathbb{Q}$, with $\tilde{\mathcal{O}}((h+1)D^3)$ bit operations using a probabilistic algorithm, where $h$ is the logarithmic heigth of $F$.<br />Comment: 27 pages, 2 figures
- Subjects :
- [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Polynomial
Plane curve
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
010102 general mathematics
Zero (complex analysis)
Ocean Engineering
Field (mathematics)
010103 numerical & computational mathematics
01 natural sciences
Puiseux series
Separable space
Combinatorics
Mathematics - Algebraic Geometry
Factorization
Arbitrary-precision arithmetic
FOS: Mathematics
0101 mathematics
complexity
Algebraic Geometry (math.AG)
14Q20, 12Y05, 13P05, 68W30
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 26449463
- Database :
- OpenAIRE
- Journal :
- Annales Henri Lebesgue, Annales Henri Lebesgue, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩, Annales Henri Lebesgue, UFR de Mathématiques-IRMAR, 2021, 4, pp.1061--1102. ⟨10.5802/ahl.97⟩
- Accession number :
- edsair.doi.dedup.....a58af97bd5d232de3a0b7886af9860c5
- Full Text :
- https://doi.org/10.5802/ahl.97⟩