Back to Search Start Over

Electric-quadrupole and magnetic-dipole contributions to the ν2+ν3 band of carbon dioxide near 3.3 µm

Authors :
Alain Campargue
Sergei N. Yurchenko
Hélène Fleurbaey
Didier Mondelain
Andrey Yachmenev
Samir Kassi
Roberto Grilli
LAsers, Molécules et Environnement (LAME-LIPhy )
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Grilli, Roberto
Source :
Journal of Quantitative Spectroscopy and Radiative Transfer, Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2021, 266, pp.107558. ⟨10.1016/j.jqsrt.2021.107558⟩, Journal of quantitative spectroscopy & radiative transfer 266, 107558 (2021). doi:10.1016/j.jqsrt.2021.107558
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The recent detections of electric-quadrupole (E2) transitions in water vapor and magnetic-dipole (M1) transitions in carbon dioxide have opened a new field in molecular spectroscopy. While in their present status, the spectroscopic databases provide only electric-dipole (E1) transitions for polyatomic molecules (H$_2$O, CO$_2$, N$_2$O, CH$_4$, O$_3$…), the possible impact of weak E2 and M1 bands to the modeling of the Earth and planetary atmospheres has to be addressed. This is especially important in the case of carbon dioxide for which E2 and M1 bands may be located in spectral windows of weak E1 absorption. In the present work, a high sensitivity absorption spectrum of CO$_2$ is recorded by Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OFCEAS) in the 3.3 µm transparency window of carbon dioxide. The studied spectral interval corresponds to the region where M1 transitions of the $ν_{2}+ν_{3}$band of carbon dioxide were recently identified in the spectrum of the Martian atmosphere. Here, both M1 and E2 transitions of the $ν_{2}+ν_{3}$ band are detected by OFCEAS. Using recent ab initio calculations of the E2 spectrum of $^{12}$C$^{16}$O$_2$, intensity measurements of five M1 lines and three E2 lines allow us to disentangle the M1 and E2 contributions. Indeed, E2 intensity values (on the order of a few 10$^{–29}$ cm/molecule) are found in reasonable agreement with ab initio calculations while the intensity of the M1 lines (including an E2 contribution) agree very well with recent very long path measurements by Fourier Transform spectroscopy. We thus conclude that both E2 and M1 transitions should be systematically incorporated in the CO$_2$ line list provided by spectroscopic databases.

Details

Language :
English
ISSN :
00224073
Database :
OpenAIRE
Journal :
Journal of Quantitative Spectroscopy and Radiative Transfer, Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2021, 266, pp.107558. ⟨10.1016/j.jqsrt.2021.107558⟩, Journal of quantitative spectroscopy & radiative transfer 266, 107558 (2021). doi:10.1016/j.jqsrt.2021.107558
Accession number :
edsair.doi.dedup.....a5fb95f2b3fdaa26a2de727149f36f43
Full Text :
https://doi.org/10.1016/j.jqsrt.2021.107558⟩